Advertisement

The Immune System and Inflammation in Type 2 Diabetes

  • Rebeca García Macedo
Chapter

Abstract

The aim of this chapter is to show how immune cells participate during type 2 diabetes (T2D) establishment. Obesity is a major T2D driver, and it is also associated with insulin resistance (IR). These pathologies appear along with chronic inflammation characterized by an increased expression of proinflammatory molecules such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, IL-1β, resistin, and leptin, whereas anti-inflammatory cytokines as adiponectin, IL-4, IL-10, and IL-1Ra are decreased. The inflammatory response is triggered, and it occurs predominantly in adipose tissue (AT).

Immune cells that secrete many inflammatory effectors related to T2D are macrophages, lymphocytes T and B-2, natural killer (NK), Th1, Th2, Th17, T regulatory, invariant (i)NKT, eosinophils, dendritic (DC), and mast cells. In obesity conditions, macrophage AT population shifts from M2 to the M1 type, the first express anti-inflammatory and the last express proinflammatory cytokines; moreover, a decreased frequency of DC has been observed on AT. Mast cells in presence of high glucose levels express proinflammatory cytokines. Proinflammatory γδ T, Th1, and CD8+ T cells increased in response to a high-fat diet (HFD) in mice, and they are concomitant with a low abundance of anti-inflammatory NK, Th2, and Treg cells, especially in visceral AT (VAT). The same effect was observed on subjects with morbid obesity as they also exhibit a selective increase of Th CD4+ cells.

Finally, it is showing some strategies designed to inhibit or decrease the deleterious inflammatory effects caused by adipocytes and immune cells in human T2D.

Keywords

Adaptive immunity Innate immunity Macrophages Leukocytes Mast cells Type 2 diabetes Obesity Inflammation Cytokines Adipokines 

Notes

Glossary

Adipokine

A cytokine or hormone that is secreted by adipose tissue.

Chemokines

Are signaling proteins secreted by cells, whose main function is to act as a chemoattractant to guide the migration of near cells. They are implicated in various diseases, such as cancer, autoimmune disorders, and diabetes.

Cytokine

Small proteins secreted and released by cells, they have a specific effect on the interactions and communications between cells.

Diet-induced obesity (DIO)

Obesity mouse model induced by high-fat diet.

FA

A carboxylic acid with aliphatic chains of 4–28 carbons, which can be esterified with glycerol to form triacylglycerols, the main stored form of lipids.

IgG, IgM

Are members of immunoglobulin (Ig) superfamily; they are ubiquitously present in several cells and tissues of vertebrates and share structural homology with cell adhesion molecules and some cytokines.

Innate immune cells

Are white blood cells that mediate innate immunity and include basophils, dendritic cells, eosinophils, mast cells, monocytes, macrophages, neutrophils, and natural killer cells.

Mitogen-activated protein kinase

(MAPK) a mammalian Ser/Thr protein kinase.

NF-κB

(Nuclear factor-κB) is a ubiquitous transcription factor involved in the control of processes, such as immune and inflammatory responses, developmental, cellular growth, and apoptosis. The NF-κB pathway has been considered as proinflammatory signaling pathway, based on the role of NF-κB in the expression of proinflammatory genes including cytokines, chemokines, and adhesion molecules.

Omental adipose tissue

The fat depot found within the peritoneum, in close association with the stomach and other internal organs.

PPARγ

(Peroxisome proliferator-activated receptor gamma) is an essential transcription regulator of the adipocyte differentiation and is required for mature adipocyte function.

Salicylates

A group of derivatives of salicylic acid, including aspirin and acetylsalicylic acid, which are widely used as analgesics, and anti-inflammatory medicaments

Thiazolidinediones

Antidiabetic drugs used therapeutically, which are known to be high-affinity ligand activators of PPARγ.

White adipose tissue (WAT)

The predominant fat storage tissue in animals, consisting mostly of adipocytes but also other cell types as mast cells and macrophages.

References

  1. 1.
    Donath MY, Schumann DM, Faulenbach M, et al. Islet inflammation in type 2 diabetes: from metabolic stress to therapy. Diabetes Care. 2008;31(Suppl 2):S161–4.PubMedCrossRefGoogle Scholar
  2. 2.
    Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest. 2005;115:1111–9.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Shoelson SE, Goldfine AB. Getting away from glucose: fanning the flames of obesity-induced inflammation. Nat Med. 2009;15:373–4.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Boni-Schnetzler M, Donath MY. How biologics targeting the IL-1 system are being considered for the treatment of type 2 diabetes. Br J Clin Pharmacol. 2013;76:263–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Stanley TL, Zanni MV, Johnsen S, Rasheed S, Makimura H, Lee H, et al. TNF-alpha antagonism with etanercept decreases glucose and increases the proportion of high molecular weight adiponectin in obese subjects with features of the metabolic syndrome. J Clin Endocrinol Metab. 2011;96:E146–50.PubMedCrossRefGoogle Scholar
  6. 6.
    Lackey DE, Olefsky JM. Regulation of metabolism by the innate immune system. Nat Rev Endocrinol. 2016;12:15–28.PubMedCrossRefGoogle Scholar
  7. 7.
    Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444:860–7.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest. 2006;116:1793–801.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Aguirre V, Werner ED, Giraud J, Lee YH, Shoelson SE. White MF Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem. 2002;277:1531–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Yang X, Smith U. Adipose tissue distribution and risk of metabolic disease: does thiazolidinedione-induced adipose tissue redistribution provide a clue to the answer? Diabetologia. 2007;50:1127–39.PubMedCrossRefGoogle Scholar
  11. 11.
    Sanchez-Gurmaches J, Guertin DA. Adipocytes arise from multiple lineages that are heterogeneously and dynamically distributed. Nat Commun. 2014;5:4099.  https://doi.org/10.1038/ncomms5099.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Johnson AR, Milner JJ, Makowski L. The inflammation highway: metabolism accelerates inflammatory traffic in obesity. Immunol Rev. 2012;249:218–38.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Wensveen FM, Jelencic V, Valentic S, Sestan M, Wensveen TT, Theurich S, Glasner A, et al. NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nat Immunol. 2015a;16:376–85.PubMedCrossRefGoogle Scholar
  14. 14.
    Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab. 2007;293:E444–52.PubMedCrossRefGoogle Scholar
  15. 15.
    Olsen JM, Sato M, Dallner OS, Sandstrom AL, Pisani DF, Chambard JC, Amri EZ, Hutchinson DS, Bengtsson T. Glucose uptake in brown fat cells is dependent on mTOR complex 2-promoted GLUT1 translocation. J Cell Biol. 2014;207:365–74.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Heilbronn L, Smith SR, Ravussin E. Failure of fat cell proliferation, mitochondrial function and fat oxidation results in ectopic fat storage, insulin resistance and type II diabetes mellitus. Int J Obes Relat Metab Disord. 2004;28(Suppl 4):S12–21.PubMedCrossRefGoogle Scholar
  17. 17.
    Carpentier A, Mittelman SD, Bergman RN, Giacca A, Lewis GF. Prolonged elevation of plasma free fatty acids impairs pancreatic beta-cell function in obese nondiabetic humans but not in individuals with type 2 diabetes. Diabetes. 2000;49:399–408.PubMedCrossRefGoogle Scholar
  18. 18.
    Sharma S, Adrogue JV, Golfman L, Uray I, Lemm J, Youker K, Noon GP, Frazier OH, Taegtmeyer H. Intra-myocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. FASEB J. 2004;18:1692–700.PubMedCrossRefGoogle Scholar
  19. 19.
    Kremen J, Dolinkova M, Krajickova J, Blaha J, Anderlova K, Lacinova Z, et al. Increased subcutaneous and epicardial adipose tissue production of proinflammatory cytokines in cardiac surgery patients: possible role in postoperative insulin resistance. J Clin Endocrinol Metab. 2006;91:4620–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Yudkin JS, Eringa E, Stehouwer CD. “Vasocrine” signalling from perivascular fat: a mechanism linking insulin resistance to vascular disease. Lancet. 2005;365:1817–20.PubMedCrossRefGoogle Scholar
  21. 21.
    Van Puyvelde K, Mets T, Njemini R, Beyer I, Bautmans I. Effect of advanced glycation end product intake on inflammation and aging: a systematic review. Nutr Rev. 2014;72:638–50.PubMedCrossRefGoogle Scholar
  22. 22.
    Ramji DP, Davies TS. Cytokines in atherosclerosis: key players in all stages of disease and promising therapeutic targets. Cytokine Growth Factor Rev. 2015;26:673–85.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Jovanovic K, Siebeck M, Gropp R. The route to pathologies in chronic inflammatory diseases characterized by T helper type 2 immune cells. Clin Exp Immunol. 2014;178:201–11.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Hilgendorf I, Swirski FK. Making a difference: monocyte heterogeneity in cardiovascular disease. Curr Atheroscler Rep. 2012;14:450–9.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Poitou C, Dalmas E, Renovato M, Benhamo V, Haj-duch F, Abdennour M, et al. CD14dimcd16+ and CD14+CD16+ monocytes in obesity and during weight loss: relationships with fat mass and subclinical atherosclerosis. Arterioscler Thromb Vasc Biol. 2011;31:2322–30.PubMedCrossRefGoogle Scholar
  26. 26.
    Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11:98–107.PubMedCrossRefGoogle Scholar
  27. 27.
    Festa A, D’Agostino R Jr, Howard G, Mykkanen L, Tracy RP, Haffner SM. Chronic subclinical inflammation as part of the insulin resistance syndrome: the Insulin Resistance Atherosclerosis Study (IRAS). Circulation. 2000;102:42–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Festa A, D’Agostino R Jr, Tracy RP, Haffner SM. Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes. 2002;51:1131–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Spranger J, Kroke A, Mohlig M, Hoffmann K, Bergmann MM, Ristow M, et al. Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes. 2003;52:812–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA. 2001;286:327–34.PubMedCrossRefGoogle Scholar
  31. 31.
    Cruz L, Garcia-Macedo R, Garcia-Valerio Y, Gutierrez M, Medina-Navarro R, Duran G, Wacher N, Kumate J. Low adiponectin levels predict type 2 diabetes in Mexican children. Diabetes Care. 2004;27:1451–3.PubMedCrossRefGoogle Scholar
  32. 32.
    Mathis D. Immunological goings-on in visceral adipose tissue. Cell Metab. 2013;17:851–9.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11:85–97.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Medzhitov R, Janeway C Jr. Innate immunity. N Engl J Med. 2000;343:338–44.PubMedCrossRefGoogle Scholar
  35. 35.
    Delves PJ, Roitt D. The Immune System – First of two parts. N Engl J Med. 2000;343:37–50.PubMedCrossRefGoogle Scholar
  36. 36.
    Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112:1821–30.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med. 2009;15:914–20.PubMedCrossRefGoogle Scholar
  38. 38.
    Winer DA, Winer S, Shen L, Wadia PP, Yantha J, Paltser G, et al. B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat Med. 2011;17:610–7.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Liu J, Divoux A, Sun J, Zhang J, Clement K, Glickman JN, et al. Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nat Med. 2009;15:940–5.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Bertola A, Ciucci T, Rousseau D, Bourlier V, Duffaut C, Bonnafous S, et al. Identification of adipose tissue dendritic cells correlated with obesity-associated insulin-resistance and inducing Th17 responses in mice and patients. Diabetes. 2012;61:2238–47.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Berrou J, Fougeray S, Venot M, Chardiny V, Gautier JF, Dulphy N, et al. Natural killer cell function, an important target for infection and tumor protection, is impaired in type 2 diabetes. PLoS One. 2013;8:e62418.  https://doi.org/10.1371/journal.pone.0062418.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Talukdar S, Oh DY, Bandyopadhyay G, Li D, Xu J, McNelis J, et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat Med. 2012;18:1407–12.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Wu D, Molofsky AB, Liang HE, Ricardo-Gonzalez RR, Jouihan HA, Bando JK, et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science. 2011;332:243–7.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Grant R, Youm YH, Ravussin A, Dixit VD. Quantification of adipose tissue leukocytosis in obesity. Methods Mol Biol. 2013;1040:195–209.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Kosteli A, Sugaru E, Haemmerle G, Martin JF, Lei J, Zechner R, et al. Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J Clin Invest. 2010;120:3466–79.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Nguyen KD, Qiu Y, Cui X, Goh YP, Mwangi J, David T, et al. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature. 2011;480:104–8.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Weisberg SP, McCann D, Desai M, Rosenbaun M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112:1796–808.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117:75–184.CrossRefGoogle Scholar
  49. 49.
    Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J, Nayer A, et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med. 2009;15:930–9.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Chawla A, Nguyen KD, Goh YP. Macrophage-mediated inflammation in metabolic disease. Nat Rev Immunol. 2011;11:738–49.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    McNelis JC, Olefsky JM. Macrophages, immunity, and metabolic disease. Immunity. 2014;41:36–48.PubMedCrossRefGoogle Scholar
  52. 52.
    Fujisaka S, Usui I, Bukhari A, Ikutani M, Oya T, Kanatani Y, et al. Regulatory mechanisms for adipose tissue M1 and M2 macrophages in diet-induced obese mice. Diabetes. 2009;58:2574–82.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Wentworth JM, Naselli G, Brown WA, Doyle L, Phipson B, Smyth GK, et al. Pro-inflammatory CD11cCCD206C adipose tissue macrophages are associated with insulin resistance in human obesity. Diabetes. 2010;59:1648–56.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Kotnik P, Keuper M, Wabitsch M, Fischer-Posovszky P. Interleukin-1β downregulates RBP4 secretion in human adipocytes. PLoS One. 2013;8:e57796.  https://doi.org/10.1371/journal.pone.0057796.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Constant VA, Gagnon A, Landry A, Sorisky A. Macrophage-conditioned medium inhibits the differentiation of 3T3-L1 and human abdominal preadipocytes. Diabetologia. 2006;49:1402–11.PubMedCrossRefGoogle Scholar
  56. 56.
    Patsouris D, Cao JJ, Vial G, Bravard A, Lefai E, Durand A, et al. Insulin Resistance is Associated with MCP1-Mediated Macrophage Accumulation in Skeletal Muscle in Mice and Humans. PLoS One. 2014;9:e110653.  https://doi.org/10.1371/journal.pone.0110653.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Eguchi K, Manabe I, Oishi-Tanaka Y, Ohsugi M, Kono N, Ogata F, et al. Saturated fatty acid and TLR signaling link beta cell dysfunction and islet inflammation. Cell Metab. 2012;15:518–33.PubMedCrossRefGoogle Scholar
  58. 58.
    Divoux A, Moutel S, Poitou C, Lacasa D, Veyrie N, Aissat A, et al. Mast cells in human adipose tissue: link with morbid obesity, inflammatory status, and diabetes. J Clin Endocrinol Metab. 2012;97:E1677–85.PubMedCrossRefGoogle Scholar
  59. 59.
    Nagai K, Fukushima T, Oike H, Kobori M. High glucose increases the expression of proinflammatory cytokines and secretion of TNFalpha and beta-hexosaminidase in human mast cells. Eur J Pharmacol. 2012;687:39–45.PubMedCrossRefGoogle Scholar
  60. 60.
    Gutierrez DA, Muralidhar S, Feyerabend TB, Herzig S, Rodewald HR. Hematopoietic kit deficiency, rather than lack of mast cells, protects mice from obesity and insulin resistance. Cell Metab. 2015;21:678–91.PubMedCrossRefGoogle Scholar
  61. 61.
    Chmelar J, Chatzigeorgiou A, Kyoung-Jin C, Prucnal M, Voehringer D, Roers A, et al. No role for mast cells in obesity-related metabolic dysregulation. Frontiers Immunol. 2016;7:524. eCollection 2016.  https://doi.org/10.3389/fimmu.2016.00524.CrossRefGoogle Scholar
  62. 62.
    Goh YPS, Henderson NC, Heredia JE, Red Eagle A, Odegaard JI, Lehwald N, et al. Eosinophils secrete IL-4 to facilitate liver regeneration. Proc Natl Acad Sci U S A. 2013;110:9914–9.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Schipper HS, Rakhshandehroo M, van de Graaf SF, et al. Natural killer T cells in adipose tissue prevent insulin resistance. J Clin Invest. 2012;122:3343–54.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Cipolleta D. Adipose tissue-resident regulatory T cells: phenotypic specialization, functions and therapeutic potential. Immunology. 2014;142(4):517–25.CrossRefGoogle Scholar
  65. 65.
    Wensveen FM, Valentic S, Sestan M, Turk Wensveen T, Polic B. The "Big Bang" in obese fat: Events initiating obesity-induced adipose tissue inflammation. Eur J Immunol. 2015b;45(9):2446–56.PubMedCrossRefGoogle Scholar
  66. 66.
    Bruce A, Bray D, Lewis J, Raff M, Roberts K, Watson JD. Chapter 23: The immune system. In: Molecular biology of the cell. 3rd ed. New York: Garland Publishing, Inc; 1994. p. 1204.Google Scholar
  67. 67.
    Guo H, Xu BC, Yang XG, Peng D, Wang Y, Liu XB, et al. A High Frequency of Peripheral Blood IL-22(+) CD4(+) T Cells in Patients With New Onset Type 2 Diabetes Mellitus. J Clin Lab Anal. 2016;30:95–102.PubMedCrossRefGoogle Scholar
  68. 68.
    Winer S, Chan Y, Paltser G, Truong D, Tsui H, Bahrami J, et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nat Med. 2009a;15(8):921–9.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Mehta P, Nuotio-Antar AM, Smith CW. γδ T cells promote inflammation and insulin resistance during high fat diet-induced obesity in mice. J Leukoc Biol. 2015;97:121–34.PubMedCrossRefGoogle Scholar
  70. 70.
    Caspar-Bauguil S, Cousin B, Galinier A, Segafredo C, Nibbelink M, Andre M, et al. Adipose tissues as an ancestral immune organ: site-specific change in obesity. FEBS Lett. 2005;579:3487–92.PubMedCrossRefGoogle Scholar
  71. 71.
    Winer S, Paltser G, Chan Y, Tsui H, Engleman E, Winer D, et al. Obesity predisposes to Th17 bias. Eur J Immunol. 2009b;39:2629–35.PubMedCrossRefGoogle Scholar
  72. 72.
    Rocha VZ, Folco EJ, Sukhova G, Shimizu K, Gotsman I, Vernon AH, et al. Interferon-gamma, a Th1 cytokine, regulates fat inflammation: a role for adaptive immunity in obesity. Circ Res. 2008;103:467–76.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    van der Weerd K, Dik WA, Schrijver B, Schweitzer DH, Langerak AW, Drexhage HA, et al. Morbidly obese human subjects have increased peripheral blood CD4+ T cells with skewing toward a Treg- and Th2-dominated phenotype. Diabetes. 2012;61:401–8.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Cipolletta D, Feuerer M, Li A, Kamei N, Lee J, Shoelson SE, Benoist C, et al. PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature. 2012;486:549–53.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Wu L, Parekh VV, Gabriel CL, Bracy DP, Marks-Shulman PA, Tamboli RA, et al. Activation of invariant natural killer T cells by lipid excess promotes tissue inflammation, insulin resistance, and hepatic steatosis in obese mice. Proc Natl Acad Sci U S A. 2012;109:E1143–52.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR, et al. HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med. 2011;208:1367–76.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, Goel G, et al. Succinate is an inflammatory signal that induces IL-1beta through HIF-alpha. Nature. 2013;496:238–42.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Mahmoud F, Al-Ozairi E. Inflammatory cytokines and the risk of cardiovascular complications in type 2 diabetes. Dis Markers. 2013;35:235–41.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Kaminski DA, Randall TD. Adaptive immunity and adipose tissue biology. Trends Immunol. 2010;31:384–90.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Haas KM, Poe JC, Steeber DA, Tedder TF. B-1a and B-1b cells exhibit distinct developmental requirements and have unique functional roles in innate and adaptive immunity to S. pneumoniae. Immunity. 2005;23:7–18.PubMedCrossRefGoogle Scholar
  81. 81.
    Duffaut C, Galitzky J, Lafontan M, Bouloumie A. Unexpected trafficking of immune cells within the adipose tissue during the onset of obesity. Biochem Biophys Res Commun. 2009;384:482–5.PubMedCrossRefGoogle Scholar
  82. 82.
    Lund FE. Cytokine-producing B lymphocytes-key regulators of immunity. Curr Opin Immunol. 2008;20:332–8.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Yoshida T, Mei H, Dorner T, Hiepe F, Radbruch A, Fillatreau S, et al. Memory B and memory plasma cells. Immunol Rev. 2010;237:117–39.PubMedCrossRefGoogle Scholar
  84. 84.
    Defuria J, Belkina AC, Jagannathan-Bogdan M, Snyder-Cappione J, Carr JD, Nersesova YR, et al. B cells promote inflammation in obesity and type 2 diabetes through regulation of T-cell function and an inflammatory cytokine profile. Proc Natl Acad Sci U S A. 2013;110:5133–8.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Winer DA, Winer S, Chng MH, Shen L, Engleman EG. B Lymphocytes in obesity-related adipose tissue inflammation and insulin resistance. Cell Mol Life Sci. 2014;71:1033–43.PubMedCrossRefGoogle Scholar
  86. 86.
    Simoni Y, Diana J, Ghazarian L, Beaudoin L, Lehuen A. Therapeutic manipulation of natural killer (NK) T cells in autoimmunity: are we close to reality? Clin Exp Immunol. 2013;171:8e19.CrossRefGoogle Scholar
  87. 87.
    Dungan LS, McGuinness NC, Boon L, Lynch MA, Mills KH. Innate IFN-gamma promotes development of experimental autoimmune encephalomyelitis: a role for NK cells and M1 macrophages. Eur J Immunol. 2014;44:2903–17.PubMedCrossRefGoogle Scholar
  88. 88.
    O’Rourke RW, Meyer KA, Neeley CK, Gaston GD, Sekhri P, Szumowski M, et al. Systemic NK cell ablation attenuates intra-abdominal adipose tissue macrophage infiltration in murine obesity. Obesity (Silver Spring). 2014;22:2109–14.CrossRefGoogle Scholar
  89. 89.
    Lanier LL. Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol. 2008;9:495–502.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Lynch L, O’Shea D, Winter DC, Geoghegan J, Doherty DG, O’Farrelly C. Invariant NKT cells and CD1d+ cells amass in human omentum and are depleted in patients with cancer and obesity. Eur J Immunol. 2009;39:1893–901.PubMedCrossRefGoogle Scholar
  91. 91.
    Lynch L, Nowak M, Varghese B, Clark J, Hogan AE, Toxavidis V, et al. Adipose tissue invariant NKT cells protect against diet-induced obesity and metabolic disorder through regulatory cytokine production. Immunity. 2012;37:574–87.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Schipper HS, Rakhshandehroo M, van de Graaf SF, Koppen A, Stienstra R, Prop S, et al. Natural killer T cells in adipose tissue prevent insulin resistance. J Clin Invest. 2012;122:3343–54.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Ji Y, Sun S, Xu A, Bhargava P, Yang L, Lam KS, et al. Activation of natural killer T cells promotes M2 macrophage polarization in adipose tissue and improves systemic glucose tolerance via interleukin-4 (IL-4)/STAT6 protein signaling axis in obesity. J Biol Chem. 2012;287:13561–71.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Ma X, Hua J, Li Z. Probiotics improve high fat diet-induced hepatic steatosis and insulin resistance by increasing hepatic NKT cells. J Hepatol. 2008;49:821–30.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Elinav E, Pappo O, Sklair-Levy M, Margalit M, Shibolet O, Gomori M, et al. Adoptive transfer of regulatory NKT lymphocytes ameliorates non-alcoholic steatohepatitis and glucose intolerance in ob/ob and is associated with intrahepatic CD8 trapping. J Pathol. 2006;209:121–8.PubMedCrossRefGoogle Scholar
  96. 96.
    Bendelac A, Savage PB, Teyton L. The biology of NKT cells. Annu Rev Immunol. 2007;25:297–336.PubMedCrossRefGoogle Scholar
  97. 97.
    Mantell BS, Stefanovic-Racic M, Yang X, Dedousis N, Sipula IJ, O’Doherty RM. Mice lacking NKT cells but with a complete complement of CD8+ T-cells are not protected against the metabolic abnormalities of diet-induced obesity. PLoS One. 2011;6:e19831.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Lynch L. Adipose invariant natural killer T cells. Immunology. 2014;142:337–46.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Steinman RM. Dendritic cells in vivo: a key target for a new vaccine science. Immunity. 2008;29:319–24.PubMedCrossRefGoogle Scholar
  100. 100.
    Chen Y, Tian J, TianX TX, Rui K, Tong J, et al. Adipose tissue dendritic cells enhances inflammation by prompting the generation of Th17 cells. PLoS One. 2014;9:e92450.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Donath MY, Böni-Schnetzler M, Ellingsgaard H, Halban PA, Ehses JA. Cytokine production by islets in health and diabetes: cellular origin, regulation and function. Trends Endocrinol Metab. 2010;21:261–7.PubMedCrossRefGoogle Scholar
  102. 102.
    Lumeng CN, DelProposto JB, Westcott DJ, Saltiel AR. Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes. 2008;57:3239–46.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Nieto-Vazquez I, Fernandez-Veledo S, Kramer DK, Vila-Bedmar R, Garcia-Guerra L, Lorenzo M. Insulin resistance associated to obesity: the link TNF-alpha. Arch Physiol Biochem. 2008;114:183–94.PubMedCrossRefGoogle Scholar
  104. 104.
    Vanderford NL. Defining the regulation of IL-1beta- and CHOP-mediated beta-cell apoptosis. Islets. 2010;2:334–6.PubMedCrossRefGoogle Scholar
  105. 105.
    Nakamura A, Shikata K, Hiramatsu M, Nakatou T, Kitamura T, Wada J, et al. Serum interleukin-18 levels are associated with nephropathy and atherosclerosis in Japanese patients with type 2 diabetes. Diabetes Care. 2005;28:2890–5.PubMedCrossRefGoogle Scholar
  106. 106.
    Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract. 2014;105:141–50.PubMedCrossRefGoogle Scholar
  107. 107.
    Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab. 2001;280:E745–51.PubMedCrossRefGoogle Scholar
  108. 108.
    Lo J, Bernstein LE, Canavan B, Torriani M, Jackson MB, Ahima RS, Grinspoon SK. Effects of TNF-alpha neutralization on adipocytokines and skeletal muscle adiposity in the metabolic syndrome. Am J Physiol Endocrinol Metab. 2007;293:E102–9.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Dandona P, Weinstock R, Thusu K, Abdel-Rahman E, Aljada A, Wadden T. Tumor necrosis factor-alpha in sera of obese patients: fall with weight loss. J Clin Endocrinol Metab. 1998;83:2907–10.PubMedGoogle Scholar
  110. 110.
    Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259:87–91.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Rui L, Aguirre V, Kim JK, Shulman GI, Lee A, Corbould A, et al. Insulin/IGF-1 and TNF-alpha stimulate phosphorylation of IRS-1 at inhibitory Ser307 via distinct pathways. J Clin Invest. 2001;107:181–9.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Ventre J, Doebber T, Wu M, MacNaul K, Stevens K, Pasparakis M, et al. Targeted disruption of the tumor necrosis factor-alpha gene: metabolic consequences in obese and nonobese mice. Diabetes. 1997;46:1526–31.PubMedCrossRefGoogle Scholar
  113. 113.
    Zhang HH, Halbleib M, Ahmad F, Manganiello VC, Greenberg AS. Tumor necrosis factor-alpha stimulates lipolysis in differentiated human adipocytes through activation of extracellular signal-related kinase and elevation of intracellular cAMP. Diabetes. 2002;51:2929–35.PubMedCrossRefGoogle Scholar
  114. 114.
    Guilherme A, Virbasius JV, Puri V, Czech MP. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol. 2008;9:367–77.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Koleva-Georgieva DN, Sivkova NP, Terzieva D. Serum inflammatory cytokines IL-1beta, IL-6, TNF-alpha and VEGF have influence on the development of diabetic retinopathy. Folia Med (Plovdiv). 2011;53:44–50.Google Scholar
  116. 116.
    Kolb H, Mandrup-Poulsen T. An immune origin of type 2 diabetes? Diabetologia. 2005;48:1038–50.PubMedCrossRefGoogle Scholar
  117. 117.
    Maedler K, Sergeev P, Ris F, Oberholzer J, Joller-Jemelka HI, et al. Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets. J Clin Invest. 2002;110:851–60.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Larsen CM, Faulenbach M, Vaag A, Volund A, Ehses JA, Seifert B, et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med. 2007;356:1517–26.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    De Nardo D, Latz E. NLRP3 inflammasomes link inflammation and metabolic disease. Trends Immunol. 2011;32:373–9.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Stienstra R, Tack CJ, Kanneganti TD, Joosten LA, Netea MG. The inflammasome puts obesity in the danger zone. Cell Metab. 2012;15:10–8.PubMedCrossRefGoogle Scholar
  121. 121.
    Arous C, Ferreira PG, Dermitzakis ET, Halban PA. Short term exposure of beta cells to low concentrations of interleukin-1β improves insulin secretion through focal adhesion and actin remodeling and regulation of gene expression. J Biol Chem. 2015;290:6653–69.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Larsen CM, Faulenbach M, Vaag A, Ehses JA, Donath MY, Mandrup-Poulsen T. Sustained effects of interleukinreceptor antagonist treatment in type 2 diabetes. Diabetes. 2009;32:1663–8.Google Scholar
  123. 123.
    May LT, Santhanam U, Tatter SB, Bhardwaj N, Ghrayeb J, Sehgal PB. Phosphorylation of secreted forms of human beta 2-interferon/hepatocyte stimulating factor/interleukin-6. Biochem Biophys Res Commun. 1988;152:1144–50.PubMedCrossRefGoogle Scholar
  124. 124.
    Kamimura D, Ishihara K, Hirano T. IL-6 signal transduction and its physiological roles: the signal orchestration model. Rev Physiol Biochem Pharmacol. 2003;149:1–38.PubMedGoogle Scholar
  125. 125.
    Carey AL, Febbraio MA. Interleukin-6 and insulin sensitivity: friend or foe? Diabetologia. 2004;47:1135–42.PubMedCrossRefGoogle Scholar
  126. 126.
    Paul WE, Seder RA. Lymphocyte responses and cytokines. Cell. 1994;76:241–51.PubMedCrossRefGoogle Scholar
  127. 127.
    Rotter V, Nagaev I, Smith U. Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-alpha, overexpressed in human fat cells from insulin-resistant subjects. J Biol Chem. 2003;278:45777–84.PubMedCrossRefGoogle Scholar
  128. 128.
    Eder K, Baffy N, Falus A, Fulop AK. The major inflammatory mediator interleukin-6 and obesity. Inflamm Res. 2009;58:727–36.PubMedCrossRefGoogle Scholar
  129. 129.
    Starr ME, Evers BM, Saito H. Age-associated increase in cytokine production during systemic inflammation: adipose tissue as a major source of IL-6. J Gerontol A Biol Sci Med Sci. 2009;64:723–30.PubMedCrossRefGoogle Scholar
  130. 130.
    Heinrich PC, Castell JV, Andus T. Interleukin-6 and the acute phase response. Biochem J. 1990;265:621–36.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Mohamed-Ali V, Goodrick S, Rawesh A, et al. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab. 1997;82:4196–200.PubMedGoogle Scholar
  132. 132.
    Fain JN, Madan AK, Hiler ML, Cheema P, Bahouth SW. Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology. 2004;145:2273–82.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Wallenius V, Wallenius K, Ahren B, Rudling M, Carlsten H, Dickson SL, et al. Interleukin-6- deficient mice develop mature-onset obesity. Nat Med. 2002;8:7–9.CrossRefGoogle Scholar
  134. 134.
    Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. The pro and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta. 1813;2011:878–88.Google Scholar
  135. 135.
    Kraakman MJ, Kammoun HL, Allen TL, Deswaerte V, Henstridge DC, Estevez E, et al. Blocking IL-6 trans-signaling prevents high-fat diet-induced adipose tissue macrophage recruitment but does not improve insulin resistance. Cell Metab. 2015;21:403–16.PubMedCrossRefGoogle Scholar
  136. 136.
    Herder C, Schöttker B, Rothenbacher D, et al. Interleukin-6 in the prediction of primary cardiovascular events in diabetes patients: results from the ESTHER study. Atherosclerosis. 2011;216:244–7.PubMedCrossRefGoogle Scholar
  137. 137.
    Lowe G. Mark Woodward, Graham Hillis,2 Ann Rumley,1 Qiang Li,2 Stephen Harrap, Circulating Inflammatory Markers and the Risk of Vascular Complications and Mortality in People With Type 2 Diabetes and Cardiovascular Disease or Risk Factors: The ADVANCE Study. Diabetes. 2014;63:1115–23.PubMedCrossRefGoogle Scholar
  138. 138.
    Starkie R, Ostrowski SR, Jauffred S, Febbraio M, Pedersen BK. Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans. FASEB J. 2003;17:884–6.PubMedCrossRefGoogle Scholar
  139. 139.
    Steensberg A, Fischer CP, Keller C, Møller K, Pedersen BK. IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am J Physiol Endocrinol Metab. 2003;285:E433–7.PubMedCrossRefGoogle Scholar
  140. 140.
    Bruunsgaard H. Physical activity and modulation of systemic low-level inflammation. J Leukoc Biol. 2005;78:819–35.PubMedCrossRefGoogle Scholar
  141. 141.
    Pedersen BK, Hoffman-Goetz L. Exercise and the immune system: regulation, integration, and adaptation. Physiol Rev. 2000;80:1055–81.PubMedCrossRefGoogle Scholar
  142. 142.
    Brandt C, Pedersen BK. The role of exercise-induced myokines in muscle homeostasis and the defense against chronic diseases. J Biomed Biotechnol. 2010;2010:520258.  https://doi.org/10.1155/2010/520258.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Pedersen BK, Steensberg A, Fischer C, Keller C, Keller P, et al. Searching for the exercise factor: is IL-6 a candidate? J Muscle Res Cell Motil. 2003;24:113–9.PubMedCrossRefGoogle Scholar
  144. 144.
    Gracie JA, Robertson SE, McInnes IB. Interleukin-18. J Leukoc Biol. 2003;73:213–24.PubMedCrossRefGoogle Scholar
  145. 145.
    Netea MG, Joosten LA, Lewis E, Jensen DR, Voshol PJ, Kullberg BJ, et al. Deficiency of interleukin-18 in mice leads to hyperphagia, obesity and insulin resistance. Nat Med. 2006;12:65–6.CrossRefGoogle Scholar
  146. 146.
    Dezayee ZM. Interleukin-18 can predict pre-clinical atherosclerosis and poor glycemic control in type 2 diabetes mellitus. Int J Appl Basic Med Res. 2011;1:109–12.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Miyauchi K, Takiyama Y, Honjyo J, Tateno M, Haneda M. Upregulated IL-18 expression in type 2 diabetic subjects with nephropathy: TGF-β 1 enhanced IL-18 expression in human renal proximal tubular epithelial cells. Diabetes Res Clin Pract. 2009;83:190–9.PubMedCrossRefGoogle Scholar
  148. 148.
    Skurk T, Kolb H, Muller-Scholze S, et al. The proatherogenic cytokine interleukin-18 is secreted by human adipocytes. Eur J Endocrinol. 2005;152:863–8.PubMedCrossRefGoogle Scholar
  149. 149.
    Esposito K, Pontillo A, Ciotola M, et al. Weight loss reduces interleukin-18 levels in obese women. J Clin Endocrinol Metab. 2002;87:3864–6.PubMedCrossRefGoogle Scholar
  150. 150.
    Schernthaner GH, Kopp HP, Kriwanek S, et al. Effect of massive weight loss induced by bariatric surgery on serum levels of interleukin-18 and monocyte-chemoattractant- protein-1 in morbid obesity. Obes Surg. 2006;16:709–15.PubMedCrossRefGoogle Scholar
  151. 151.
    Schernthaner J, McQuillan BM, Chapman CM, Thompson PL, Beilby JP. Elevated interleukin-18 levels are associated with the metabolic syndrome independent of obesity and insulin resistance. Arterioscler Thromb Vasc Biol. 2005;25:1268–73.CrossRefGoogle Scholar
  152. 152.
    Blankenberg S, Luc G, Ducimetiere P, Arveiler D, Ferrières J, Amouyel P, et al. Interleukin-18 and the risk of coronary heart disease in European men: the Prospective Epidemiological Study of Myocardial Infarction (PRIME). Circulation. 2003;108:2453–9.PubMedCrossRefGoogle Scholar
  153. 153.
    Li MO, Flavell RA. TGF-β: a master of all T cell trades. Cell. 2008;134:392–404.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Tran DQ. TGF-β: the sword, the wand, and the shield of FOXP3+ regulatory T cells. J Mol Cell Biol. 2012;4:29–37.PubMedCrossRefGoogle Scholar
  155. 155.
    Ghoreschi K, Laurence A, Yang XP, Tato CM, McGeachy MJ, Konkel JE, et al. Generation of pathogenic TH17 cells in the absence of TGF-beta signalling. Nature. 2010;467:967–71.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Gutcher I, Donkor MK, Ma Q, Rudensky AY, Flavell RA, Li MO. Autocrine transforming growth factor-β1 promotes in vivo Th17 cell differentiation. Immunity. 2011;34:396–408.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Li MO, Wan YY, Flavell RA. T cell-produced transforming growth factor-beta1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity. 2007;26:579–91.PubMedCrossRefGoogle Scholar
  158. 158.
    Khali N. TGF-beta: from latent to active. Microbes Infect. 1999;1:1255–63.CrossRefGoogle Scholar
  159. 159.
    Herder C, Zierer A, Koening W, Roden M, Meisinger C, Thorand B. Transforming growth factor-beta1 and incident type 2 diabetes: results from the MONICA/KORA case-cohort study, 1984-2002. Diabetes Care. 2009;32:1921–3.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Steppan CM, Brown EJ, Wright CM, Bhat S, Banerjee RR, Dai CY, Enders GH, et al. A family of tissue-specific resistin-like molecules. Proc Natl Acad Sci U S A. 2001;98:502–6.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    McTernan PG, McTernan CL, Chetty R, Jenner K, Fisher FM, Lauer MN, et al. Increased resistin gene and protein expression in human abdominal adipose tissue. J Clin Endocrinol Metab. 2002;87:2407–10.PubMedCrossRefGoogle Scholar
  162. 162.
    Bertolani C, Sancho-Bru P, Failli P, Bataller R, Aleffi S, De-Franco R, et al. Resistin as an intrahepatic cytokine: overexpression during chronic injury and induction of proinflammatory actions in hepatic stellate cells. Am J Pathol. 2006;169:2042–53.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Jung HS, Park KH, Cho YM, Chung SS, Cho HJ, Cho SY, et al. Resistin is secreted from macrophages in atheromas and promotes atherosclerosis. Cardiovasc Res. 2006;69:76–85.PubMedCrossRefGoogle Scholar
  164. 164.
    Janke J, Engeli S, Gorzelniak K, Luft FC, Sharma AM. Resistin gene expression in human adipocytes is not related to insulin resistance. Obes Res. 2002;10:1–5.PubMedCrossRefGoogle Scholar
  165. 165.
    Samaha FF, Szapary PO, Iqbal N, Williams MM, Bloedon LT, Kochar A, et al. Effects of rosiglitazone on lipids, adipokines, and inflammatory markers in nondiabetic patients with low high-density lipoprotein cholesterol and metabolic syndrome. Arterioscler Thromb Vasc Biol. 2006;26:624–30.PubMedCrossRefGoogle Scholar
  166. 166.
    Lee JH, Bullen JW Jr, Stoyneva VL, Mantzoros CS. Circulating resistin in lean, obese, and insulin-resistant mouse models: lack of association with insulinemia and glycemia. Am J Physiol Endocrinol Metab. 2005;288:E625–32.PubMedCrossRefGoogle Scholar
  167. 167.
    Lazar MA. Resistin- and Obesity-associated metabolic diseases. Horm Metab Res. 2007;39:710–6.PubMedCrossRefGoogle Scholar
  168. 168.
    Azuma K, Katsukawa F, Oguchi S, Murata M, Yamazaki H, Shimada A, et al. Correlation between serum resistin level and adiposity in obese individuals. Obes Res. 2003;11:997–1001.PubMedCrossRefGoogle Scholar
  169. 169.
    Silha JV, Krsek M, Skrha JV, Sucharda P, Nyomba BL, Murphy LJ. Plasma resistin, adiponectin and leptin levels in lean and obese subjects: correlations with insulin resistance. Eur J Endocrinol. 2003;149:331–5.PubMedCrossRefGoogle Scholar
  170. 170.
    Youn BS, KY YU, Park HJ, Roberts CK, JAE M, Rifai N, et al. Plasma resistin concentrations measured by enzyme-linked immunosorbent assay using a newly developed monoclonal antibody are elevated in individuals with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2004;89:150–6.PubMedCrossRefGoogle Scholar
  171. 171.
    McTernan PG, Fisher FM, Valsamakis G, Chetty R, Harte A, MCternan CL. Resistin and type 2 diabetes: Regulation of resistin expression by insulin and rosiglitazone and the effects of recombinant resistin on lipid and glucose metabolism in human differentiated adipocytes. J Clin Endocrinol Metab. 2003;88:6098–106.PubMedCrossRefGoogle Scholar
  172. 172.
    Heilbronn LK, Rood J, Janderova L, Albu JB, Kelley DE, Ravussin E, et al. Relationship between serum resistin concentrations and insulin resistance in nonobese, obese, and obese diabetic subjects. J Clin Endocrinol Metab. 2004;89:1844–8.PubMedCrossRefGoogle Scholar
  173. 173.
    Zou CC, Liang L, Hong F, Zhao ZY. Serum adiponectin, resistin levels and non-alcoholic fatty liver disease in obese children. Endocr J. 2005;52:519–24.PubMedCrossRefGoogle Scholar
  174. 174.
    Reinehr T, Roth CL, Menke T, Andler W. Resistin concentrations before and after weight loss in obese children. Int J Obes. 2006;30:297–301.CrossRefGoogle Scholar
  175. 175.
    Chen BH, Song Y, Ding EL, Roberts CK, Manson JE, Rifai N, et al. Circulating levels of resistin and risk of type 2 diabetes in men and women: results from two prospective cohorts. Diabetes Care. 2009 Feb;32(2):329–34.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Heidemann C, Sun Q, van Dam RM, Meigs JB, Zhang C, Tworoger SS, et al. Total and high-molecular-weight adiponectin and resistin in relation to the risk for type 2 diabetes in women. Ann Intern Med. 2008;149:307–16.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Lehrke M, Reilly MP, Millington SC, Iqbal N, Rader DJ, Lazar MA. An inflammatory cascade leading to hyperresistinemia in humans. PLoS Med. 2004;1:e45.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Burnett MS, Lee CW, Kinnaird TD, Stabile E, Durrani S, Dullum MK, et al. The potential role of resistin in atherogenesis. Atherosclerosis. 2005;182:241–8.PubMedCrossRefGoogle Scholar
  179. 179.
    Chen C, Jiang J, Lü JM, Chai H, Wang X, Lin PH, et al. Resistin decreases expression of endothelial nitric oxide synthase through oxidative stress in human coronary artery endothelial cells. Am J Physiol Heart Circ Physiol. 2010;299:H193–201.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Mu H, Ohashi R, Yan S, Chai H, Yang H, Lin P, et al. Adipokine resistin promotes in vitro angiogenesis of human endothelial cells. Cardiovasc Res. 2006;70:146–57.PubMedCrossRefGoogle Scholar
  181. 181.
    Shen YH, Zhang L, Gan Y, Wang X, Wang J, LeMaire SA, et al. Up-regulation of PTEN (phosphatase and tensin homolog deleted on chromosome ten) mediates p38 MAPK stress signal-induced inhibition of insulin signaling. A cross-talk between stress signaling and insulin signaling in resistin-treated human endothelial cells. J Biol Chem. 2006;281:7727–36.PubMedCrossRefGoogle Scholar
  182. 182.
    Reilly MP, Lehrke M, Wolfe ML, Rohatgi A, Lazar MA, Rader DJ. Resistin is an inflammatory marker of atherosclerosis in humans. Circulation. 2005;111:932–9.PubMedCrossRefGoogle Scholar
  183. 183.
    Tarkowski A, Bjersing J, Shestakov A, Bokarewa MI, et al. Resistin competes with lipopolysaccharide for binding to toll-like receptor 4. J Cell Mol Med. 2010;14:1419–31.PubMedCrossRefGoogle Scholar
  184. 184.
    Zhang F, Basinski MB, Beals JM, Briggs SL, Churgay LM, Clawson DK, et al. Crystal structure of the obese protein leptin-E100. Nature. 1997;387:206–9.PubMedCrossRefGoogle Scholar
  185. 185.
    Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372:425–32.PubMedCrossRefGoogle Scholar
  186. 186.
    Katagiri H, Yamada T, Oka Y. Adiposity and cardiovascular disorders: disturbance of the regulatory system consisting of humoral and neuronal signals. Circ Res. 2007;101:27–39.PubMedCrossRefGoogle Scholar
  187. 187.
    Frühebeck G. Intracellular signaling pathways activated by leptin. Biochem J. 2006;393:7–20.CrossRefGoogle Scholar
  188. 188.
    Wang M, Orci L, Ravazzola M, Unger RH. Fat storage in adipocytes requires inactivation of leptin’s paracrine activity: Implications for treatment of human obesity. Proc Natl Acad Sci U S A. 2005;102:18011–6.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Courtier C, Sarkis C, Séron K, Belouzard S, Chen P, Lenain A, et al. Silencing of OB-RGRP in mouse hypothalamic arcuate nucleus increases leptin receptor signaling and prevents diet-induced obesity. Proc Natl Acad Sci U S A. 2007;104:19476–81.CrossRefGoogle Scholar
  190. 190.
    Peelman F, Zabeau L, Moharana K, Savvides SN, Tavernier J. 20 years of leptin: insights into signaling assemblies of the leptin receptor. J Endocrinol. 2014;223:T9–T23.PubMedCrossRefGoogle Scholar
  191. 191.
    Wang B, Chandrasekera PC, Pippin JJ. Leptin- and leptin receptor-deficient rodent models: relevance for human type2 diabetes. Curr Diabetes Rev. 2014;10:131–45.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Wauters M, Considine M, Van Gaal L. Human leptin: From an adipocyte hormone to an endocrine mediator. Eur J Endocrinol. 2000;143:293–311.PubMedCrossRefGoogle Scholar
  193. 193.
    Ceddia RB, Heikki AK, Zierath JR, Sweeney G. Analysis of paradoxical observations on the association between leptin and insulin resistance. FASEB J. 2002;16:1163–76.PubMedCrossRefGoogle Scholar
  194. 194.
    Ziotopoulou M, Erani DM, Hileman SM, Bjorbaek C, Mantzoros CS. Unlike leptin, ciliary neurotrophic factor does not reverse the starvation-induced changes of serum corticosterone and hypothalamic neuropeptide levels but induces expression of hypothalamic inhibitors of leptin signaling. Diabetes. 2000;49:1890–6.PubMedCrossRefGoogle Scholar
  195. 195.
    Camisotto PG, Bukowiecki LJ. Mechanisms of leptin secretion from white adipocytes. Am J Physiol Cell Physiol. 2002;283:C244–50.CrossRefGoogle Scholar
  196. 196.
    Morioka T, Asilmaz E, Hu J, Dishinger JF, Kurpad AJ, Elias CF, et al. Disruption of leptin receptor expression in the pancreas directly affects beta cell growth and function in mice. J Clin Invest. 2007;117:2860–8.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Seufert J. Leptin effects on pancreatic beta-cell gene expression and function. Diabetes. 2004;53:152–8.CrossRefGoogle Scholar
  198. 198.
    Sánchez-Margalet V, Martín-Romero C, Santos-Alvarez J, Goberna R, Najib S, Gonzalez-Yanes C. Role of leptin as an immunomodulator of blood mononuclear cells: mechanisms of action. Clin Exp Immunol. 2003;133:11–9.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Zarkesh-Esfahani H, Pockley AG, Wu Z, Hellewell PG, Weetman AP, Ross RJ. Leptin indirectly activates human neutrophils via induction of TNF-alpha. J Immunol. 2004;172:1809–14.PubMedCrossRefGoogle Scholar
  200. 200.
    Farooqi IS, Matarese G, Lord GM, Keogh JM, Lawrence E, Agwu C, et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest. 2002;110:1093–103.PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Meier CA, Bobbioni E, Gabay C, Assimacopoulos-Jeannet F, Golay A, Dayer JM. IL-1 receptor antagonist serum levels are increased in human obesity: A possible link to the resistance to leptin? J Clin Endocrinol Metab. 2002;87:1184–8.PubMedCrossRefGoogle Scholar
  202. 202.
    Bruun JM, Pedersen SB, Kristensen K, Richelsen B. Effects of proinflammatory cytokines and chemokines on leptin production in human adipose tissue in vitro. Mol Cell Endocrinol. 2002;190:91–9.PubMedCrossRefGoogle Scholar
  203. 203.
    La Cava A, Matarese G. The weight of leptin in immunity. Nat Rev Immunol. 2004;4:371–9.PubMedCrossRefGoogle Scholar
  204. 204.
    Moraes-Vieira PM, Larocca RA, Bassi EJ, Peron JP. Andrade- Oliveira V, Wasinski F, et al. Leptin deficiency impairs maturation of dendritic cells and enhances induction of regulatory T and Th17 cells. Eur J Immunol. 2014;44:794–806.PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Papathanassoglou E, El-Haschimi K, Li XC, Matarese G, Strom T, Mantzoros C. Leptin receptor expression and signaling in lymphocytes: kinetics during lymphocyte activation, role in lymphocyte survival, and response to high fat diet in mice. J Immunol. 2006;176:7745–52.PubMedCrossRefGoogle Scholar
  206. 206.
    Tian Z, Sun R, Wei H, Gao B. Impaired natural killer (NK) cell activity in leptin receptor deficient mice: leptin as a critical regulator in NK cell development and activation. Biochem Biophys Res Commun. 2002;298:297–302.PubMedCrossRefGoogle Scholar
  207. 207.
    Lo CK, Lam QL. Yang, Ko KH, Sun L, Ma R, Wang S. et al., Leptin signaling protects NK cells from apoptosis during development in mouse bone marrow. Cell Mol Immunol. 2009;6:353–60.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Volarevic A, Al-Qahtani A, Arsenijevic N, Pajovic C, Lukic ML. Interleukin-1 receptor antagonist (IL-1Ra) and IL-1Ra producing mesenchymal stem cells as modulators of diabetogenesis. Autoimmunity. 2010;43:255–63.PubMedCrossRefGoogle Scholar
  209. 209.
    Herder C, Brunner EJ, Rathmann W, Strassburger K, Tabák AG, Schloot NC, et al. Elevated levels of the anti- inflammatory interleukin-1 receptor antagonist precede the onset of type 2 diabetes: the Whitehall II study. Diabetes Care. 2009;32:421–3.PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Salomaa V, Havulinna A, Saarela O, Zeller T, Jousilahti P, Jula A, et al. Thirty-one novel biomarkers as predictors for clinically incident diabetes. PLoS One. 2010;5:e10100.  https://doi.org/10.1371/journal.pone.0010100.CrossRefPubMedPubMedCentralGoogle Scholar
  211. 211.
    Larsen CM, Faulenbach M, Vaag A, Vølund A, Ehses JA, Seifert B, Mandrup-Poulsen T, et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med. 2007;356:1517–26.PubMedCrossRefPubMedCentralGoogle Scholar
  212. 212.
    Ehses JA, Lacraz G, Giroix MH, Schmidlin F, Coulaud J, Kassis N, et al. IL-1 antagonism reduces hyperglycemia and tissue inflammation in the type 2 diabetic GK rat. Proc Natl Acad Sci U S A. 2009;106:13998–4003.PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Sauter NS, Schulthess FT, Galasso R, Castellani LW, Maedler K. The anti-inflammatory cytokine interleukin-1 receptor antagonist protects from high-fat diet-induced hyperglycemia. Endocrinology. 2008;149:2208–18.PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Paul WE. Interleukin 4: signaling mechanisms and control of T cell differentiation. Ciba Found Symp. 1997;204:208–16.PubMedGoogle Scholar
  215. 215.
    Garcia-Zepeda EA, Combadiere C, Rothenberg ME, Sarafi MN, Lavigne F, Hamid Q, et al. Human monocyte chemoattractant protein-4 is a novel CC chemokine with activates on macrophage, eosinophils, and basophils induced in allergic and non-allergic inflammation that signals through the CC chemokine receptors (CCR)–2 and-3. J Immunol. 1996;157:5613–26.PubMedGoogle Scholar
  216. 216.
    Kang K, Reilly SM, Karabacak V, Gangl MR, Fitzgerald K, Hatano B, et al. Adipocyte-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity. Cell Metab. 2008;7:485–95.PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Nelms K, Keegan AD, Zamorano J, Ryan JJ, Paul WE. The IL-4 receptor: signaling mechanisms and biologic functions. Annu Rev Immunol. 1999;17:701–38.PubMedCrossRefGoogle Scholar
  218. 218.
    Odegaard JI, Ricardo-Gonzalez RR, Red Eagle A, Vats D, Morel CR, Goforth MH, et al. Alternative M2 activation of Kupffer cells by PPARδ ameliorates obesity-induced insulin resistance. Cell Metab. 2008;7:496–507.PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Tsao CH, Shiau MY, Chuang PH, Chang YH, Hwang J. Interleukin-4 regulates lipid metabolism by inhibiting adipogenesis and promoting lipolysis. J Lipid Res. 2014;55:385–97.PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Shiau MY, Lu HF, Chang YH, Chiu YC, Shih YL. Characterization of proteins regulated by interleukin-4 in 3T3-L1 adipocytes. Springerplus. 2015;4:242.  https://doi.org/10.1186/s40064-015-0980-0.CrossRefPubMedPubMedCentralGoogle Scholar
  221. 221.
    Chang YH, Ho KT, Lu SH, Huang CN. Shiau MY Regulation of glucose/lipid metabolism and insulin sensitivity by interleukin-4. Int J Obes. 2012a;36:993–8.CrossRefGoogle Scholar
  222. 222.
    Chang YH, Huang CN, Shiau MY. Association of IL-4 receptor gene polymorphisms with high density lipoprotein cholesterol. Cytokine. 2012b;59:309–12.PubMedCrossRefGoogle Scholar
  223. 223.
    Ho KT, Shiau MY, Chang YH, Chen CM, Yang SC, Huang CN. Association of IL-4 promoter polymorphisms in Taiwanese patients with type 2 diabetes mellitus. Metabolism. 2010;59:1717–22.PubMedCrossRefGoogle Scholar
  224. 224.
    Moore KW, de Waal MR, Coffman RL, O’Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol. 2001;19:683–765.PubMedCrossRefGoogle Scholar
  225. 225.
    Han X, Boisvert WA. Interleukin-10 protects against atherosclerosis by modulating multiple atherogenic macrophage function. Thromb Haemost. 2015;113:505–12.PubMedCrossRefGoogle Scholar
  226. 226.
    Kyriazi E, Tsiotra PC, Boutati E, Ikonomidis I, Fountoulaki K, Maratou E. Effects of adiponectin in TNF-α, IL-6, and IL-10 cytokine production from coronary artery disease macrophages. Horm Metab Res. 2011;43:537–44.PubMedCrossRefGoogle Scholar
  227. 227.
    O’Garra A, Barrat FJ, Castro AG, Vicari A, Hawrylowicz C. Strategies for use of IL-10 or its antagonists in human disease. Immunol Rev. 2008;223:114–31.PubMedCrossRefGoogle Scholar
  228. 228.
    Sabat R, Grütz G, Warszawska K, Kirsch S, Witte E, Wolk K, et al. Biology of interleukin-10. Cytokine Growth Factor Rev. 2010;21:331–4.PubMedCrossRefGoogle Scholar
  229. 229.
    Li MO, Flavell RA. Contextual regulation of inflammation: a duet by transforming growth factor-β and interleukin-10. Immunity. 2008;28:468–76.PubMedCrossRefGoogle Scholar
  230. 230.
    Lynch L. Adipose invariant natural killer T cells. Immunol. 2014;142:337–46.CrossRefGoogle Scholar
  231. 231.
    Hong EG, Ko HJ, Cho YR, Kim HJ, Ma Z, Yu TY, et al. Interleukin-10 prevents diet-induced insulin resistance by attenuating macrophage and cytokine response in skeletal muscle. Diabetes. 2009;58:2525–35.PubMedPubMedCentralCrossRefGoogle Scholar
  232. 232.
    Van Exel E, Gussekloo J, de Craen AJ, Frölich M, Bootsma-Van Der Wiel A, Westendorp RG. Low production capacity of interleukin-10 associates with the metabolic syndrome and type 2 diabetes: the Leiden 85-Plus Study. Diabetes. 2002;51:1088–92.PubMedCrossRefPubMedCentralGoogle Scholar
  233. 233.
    Blüher M, Fasshauer M, Tönjes A, Kratzsch J, Schön MR, Paschke R. Association of interleukin-6, C-reactive protein, interleukin-10 and adiponectin plasma concentrations with measures of obesity, insulin sensitivity and glucose metabolism. Exp Clin Endocrinol Diabetes. 2005;113:534–7.PubMedCrossRefGoogle Scholar
  234. 234.
    Pham MN, Hawa MI, Pfleger C, Roden M, Schernthaner G, Pozzilli P, et al. Pro- and anti-inflammatory cytokines in latent autoimmune diabetes in adults, type 1 and type 2 diabetes patients: Action LADA 4. Diabetologia. 2011;54:1630–8.PubMedCrossRefGoogle Scholar
  235. 235.
    Welsh P, Murray HM, Ford I, Trompet S, de Craen AJ, Jukema JW, et al. Circulating interleukin-10 and risk of cardiovascular events: a prospective study in the elderly at risk. Arterioscler Thromb Vasc Biol. 2011;31:2338–44.PubMedCrossRefGoogle Scholar
  236. 236.
    Francisco CO, Catai AM, Moura-Tonello SCG, Arruda LCM, Lopes SLB, Benze BG, et al. Cytokine profile and lymphocyte subsets in type 2 diabetes. Braz J Med Biol Res. 2016;49:e5062.PubMedPubMedCentralCrossRefGoogle Scholar
  237. 237.
    Li S, Shin HJ, Ding EL, VanDam RM. Adiponectin levels and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA. 2009;302:179–88.PubMedCrossRefGoogle Scholar
  238. 238.
    Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem. 1995;270:26746–9.PubMedCrossRefGoogle Scholar
  239. 239.
    Calle MC, Fernandez ML. Inflammation and type 2 diabetes. Diabetes Metab. 2012;38:183–91.PubMedCrossRefGoogle Scholar
  240. 240.
    Silva TE, Colombo G, Schiavon LL. Adiponectin: A multitasking player in the field of liver diseases. Diabetes Metab. 2014;40:95–107.PubMedCrossRefGoogle Scholar
  241. 241.
    Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K, et al. PPAR gamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes. 2001;50:2094–9.PubMedCrossRefGoogle Scholar
  242. 242.
    Liu C, Feng X, Li Q, Wang Y, Li Q, Hua M. Adiponectin, TNF-α and inflammatory cytokines and risk of type 2 diabetes: A systematic review and meta-analysis. Cytokine. 2016;86:100–9.PubMedCrossRefGoogle Scholar
  243. 243.
    Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, et al. Hypoadiponectinemia in obesity and type 2 diabetes: Close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab. 2001;86:1930–5.PubMedCrossRefGoogle Scholar
  244. 244.
    Cnop M, Havel PJ, Utzschneider KM, Carr DB, Sinha MK, Boyko EJ, et al. Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: Evidence for independent roles of age and sex. Diabetologia. 2003;46:459–69.PubMedCrossRefGoogle Scholar
  245. 245.
    Fisman EZ, Tenenbaum A. Adiponectin: a manifold therapeutic target for metabolic syndrome, diabetes, and coronary disease? Cardiovasc Diabetol. 2014;13:103.  https://doi.org/10.1186/1475-2840-13-103.CrossRefPubMedPubMedCentralGoogle Scholar
  246. 246.
    Vionnet N, Hani EH, Dupont S, Gallina S, Francke S, Dotte S, et al. Genome wide search for type 2 diabetes-susceptibility genes in French whites: evidence for a novel susceptibility locus for early-onset diabetes on chromosome 3q27-qter and independent replication of a type 2-diabetes locus on chromosome 1q21-q24. Am J Hum Genet. 2000;67:1470–80.PubMedPubMedCentralCrossRefGoogle Scholar
  247. 247.
    Kopf S, Oikonomou D, von Eynaten K, Kiesser M, Zdunek D, Hess G, et al. Urinary excretion of high molecular weight adiponectin is an independent predictor of decline of renal function in type 2 diabetes. Acta Diabetol. 2014;51:479–89.PubMedGoogle Scholar
  248. 248.
    Iwabu M, Yamauchi T, Okada-Iwabu M, Sato K, Nakagawa T, Funata M, et al. Adiponectin and adipoR1 regulate PGC-1a and mitochondria by Ca2+ and AMPK/ SIRT1. Nature. 2010;464:1313–9.PubMedCrossRefGoogle Scholar
  249. 249.
    Holland WL, Miller RA, Wang ZV, Sun K, Barth BM, Bui HH, et al. Receptor- mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat Med. 2011;17:55–63.PubMedCrossRefGoogle Scholar
  250. 250.
    Viollet B, Foretz M, Guigas B, Horman S, Dentin R, Bertrand L, et al. Activation of AMP-activated protein kinase in the liver: a new strategy for the management of metabolic hepatic disorders. J Physiol. 2006;574(Pt 1):41–53.PubMedPubMedCentralCrossRefGoogle Scholar
  251. 251.
    Luo S, Lei H, Liu Q. Correlation between serum adiponectin and risk factors in patients with coronary artery disease. Clin Lab. 2013;59:121–6.PubMedCrossRefGoogle Scholar
  252. 252.
    Hirata A, Kishida K, Nakatsuji H, Kobayashi H, Funahashi T, Shimomura I. High serum C1q-adiponectin/total adiponectin ratio correlates with coronary artery disease in Japanese type 2 diabetics. Metabolism. 2013;62:578–85.PubMedCrossRefGoogle Scholar
  253. 253.
    OkamotoY KS, Ouchi N, Nishida M, Arita Y, Kumada M, et al. Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation. 2002;106:2767–70.CrossRefGoogle Scholar
  254. 254.
    Xu A, Wang Y, Keshaw H, Xu LY, Lam KS, Cooper GJ. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J Clin Invest. 2003;112:91–100.PubMedPubMedCentralCrossRefGoogle Scholar
  255. 255.
    Deng G, Long Y, Yu YR, Li MR. Adiponectin directly improves endothelial dysfunction in obese rats through the AMPK-eNOS Pathway. Int J Obes. 2010;34:165–71.CrossRefGoogle Scholar
  256. 256.
    Ohashi K, Parker JL, Ouchi N, Higuchi A, Vita JA, Gokce N, et al. Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype. J Biol Chem. 2010;285:6153–60.PubMedCrossRefGoogle Scholar
  257. 257.
    Takemura Y, Ouchi N, Shibata R, Aprahamian T, Kirber MT, Summer RS, et al. Adiponectin modulates inflammatory reactions via calreticulin receptor-dependent clearance of early apoptotic bodies. J Clin Invest. 2007;117:375–86.PubMedPubMedCentralCrossRefGoogle Scholar
  258. 258.
    Wilk S, Scheibenbogen C, Bauer S, Jenke A, Rother M, Guerreiro M, et al. Adiponectin is a negative regulator of antigen-activated T cells. Eur J Immunol. 2011;41:2323–32.PubMedCrossRefGoogle Scholar
  259. 259.
    Wilk S, Jenke A, Stehr J, Yang CA, Bauer S, Goldner K, et al. Adiponectin modulates NK-cell function. Eur J Immunol. 2013;43:1024–33.PubMedCrossRefGoogle Scholar
  260. 260.
    Yokota T, Oritani K, Takahashi I, Ishikawa J, Matsuyama A, Ouchi N, et al. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood. 2000;96:1723–32.PubMedGoogle Scholar
  261. 261.
    Kumada M, Kihara S, Ouchi N, Kobayashi H, Okamoto Y, Ohashi K, et al. Adiponectin specifically increased tissue inhibitor of metalloproteinase-1 through interleukin-10 expression inhuman macrophages. Circulation. 2004;109:2046–9.PubMedCrossRefGoogle Scholar
  262. 262.
    Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 2003;423:762–9.PubMedCrossRefPubMedCentralGoogle Scholar
  263. 263.
    Koch CE, Lowe C, Legler K, Benzler J, Boucsein M, Böttiger G, et al. Central adiponectin acutely improves glucose tolerance in male mice. Endocrinology. 2014;155:1806–16.PubMedCrossRefGoogle Scholar
  264. 264.
    Coope A, Milanski M, Araújo EP, Tambascia M, Saad MJ, Geloneze B, et al. AdipoR1 mediates the anorexigenic and insulin/leptin-like actions of adiponectin in the hypothalamus. FEBS Lett. 2008;582:1471–6.PubMedCrossRefGoogle Scholar
  265. 265.
    Goldfine AB, Conlin PR, Halperin F, Koska J, Permana P, Schwenke D, et al. A randomised trial of salsalate for insulin resistance and cardiovascular risk factors in persons with abnormal glucose tolerance. Diabetologia. 2013;56:714–23.PubMedPubMedCentralCrossRefGoogle Scholar
  266. 266.
    Barzilay JI, Jablonski KA, Fonseca V, Shoelson SE, Goldfine AB, Strauch C, et al. The impact of salsalate treatment on serum levels of advanced glycation end products in type 2 diabetes. Diabetes Care. 2014;37:1083–91.PubMedPubMedCentralCrossRefGoogle Scholar
  267. 267.
    Koppaka S, Kehlenbrink S, Carey M, Li W, Sanchez E, Lee DE, et al. Reduced adipose tissue macrophage content is associated with improved insulin sensitivity in thiazolidinedione-treated diabetic humans. Diabetes. 2013;62:1843–54.PubMedPubMedCentralCrossRefGoogle Scholar
  268. 268.
    Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M, et al. PPARgamma signaling and metabolism: the good, the bad and the future. Nat Med. 2013;19:557–66.PubMedCrossRefGoogle Scholar
  269. 269.
    Dutchak PA, Katafuchi T, Bookout AL, Choi JH, Yu RT, Mangelsdorf DJ, et al. Fibroblast growth factor-21 regulates PPARgamma activity and the antidiabetic actions of thiazolidinediones. Cell. 2012;148:556–67.PubMedPubMedCentralCrossRefGoogle Scholar
  270. 270.
    Ida S, Murata K, Betou K, Kobayashi C, Ishihara Y, Imataka K. Effect of trelagliptin on vascular endothelial functions and serum adiponectin level in patients with type 2 diabetes: a preliminary single-arm prospective pilot study. Cardiovasc Diabetol. 2016;15:153.  https://doi.org/10.1186/s12933-016-0468-4.CrossRefPubMedPubMedCentralGoogle Scholar
  271. 271.
    Hensen J, Howard CP, Walter V, Thuren T. Impact of interleukin-1beta antibody (canakinumab) on glycaemic indicators in patients with type 2 diabetes mellitus: results of secondary endpoints from a randomized, placebo-controlled trial. Diabetes Metab. 2013;39:524–31.PubMedCrossRefGoogle Scholar
  272. 272.
    Sloan-Lancaster J, Abu-Raddad E, Polzer J, Miller JW, Scherer JC, De Gaetano A, et al. Double-blind, randomized study evaluating the glycemic and anti-inflammatory effects of subcutaneous LY2189102, a neutralizing IL-1beta antibody, in patients with type 2 diabetes. Diabetes Care. 2013;36:2239–46.PubMedPubMedCentralCrossRefGoogle Scholar
  273. 273.
    Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan W, et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell. 2010;42:687–98.CrossRefGoogle Scholar
  274. 274.
    Tousoulis D, Plastiras A, Siasos G, Oikonomou E, Verveniotis A, Kokkou E, et al. Omega-3 PUFAs improved endothelial function and arterial stiffness with a parallel antiinflammatory effect in adults with metabolic syndrome. Atherosclerosis. 2014;232:10–6.PubMedCrossRefGoogle Scholar
  275. 275.
    Rylander C, Sandanger TM, Engeset D, Lund E. Consumption of lean fish reduces the risk of type 2 diabetes mellitus: a prospective population based cohort study of Norwegian women. PLoS One. 2014;9:e89845.PubMedPubMedCentralCrossRefGoogle Scholar
  276. 276.
    Dalmas E, Venteclef N, Caer C, Poitou C, Cremer I, Aron-Wisnewsky J, et al. T cell-derived IL-22 amplifies IL-1-driven inflammation in human adipose tissue: relevance to obesity and type 2 diabetes. Diabetes. 2014;63:1966–77.PubMedCrossRefGoogle Scholar

Suggested/Further Reading

  1. Bai Y, Sun Q. Macrophage recruitment in obese adipose tissue. Obes Rev. 2015;16:127–36.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Eljaafari A, Robert M, Chehimi M, Chanon S, Durand C, Vial G, et al. Adipose tissue–derived stem cells from obese subjects contribute to inflammation and reduced insulin response in adipocytes through differential regulation of the Th1/Th17 balance and monocyte activation. Diabetes. 2015;64:2477–88.PubMedCrossRefGoogle Scholar
  3. Ferrante AW Jr. The immune cells in adipose tissue. Diabetes Obes Metab. 2013;15:34–8.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Grant RW, Dixit VD. Adipose tissue as an immunological organ. Obesity (Silver Spring). 2015;23:512–8.CrossRefGoogle Scholar
  5. Ip B, Cilfone N, Belkina AC, DeFuria J, Jagannathan-Bogdan M, Zhu M, et al. Th17 cytokines differentiate obesity from obesity-associated type 2 diabetes and promote TNF-α production. Obesity (Silver Spring). 2016;24:102–12.CrossRefGoogle Scholar
  6. Olson NC, Doyle MF, de Boer IH, Huber SA, Jenny NS, Kronma RA, et al. Associations of circulating lymphocyte subpopulations with type 2 diabetes: cross- sectional results from the Multi-Ethnic Study of Atherosclerosis (MESA). PLoS One. 2015;10:e0139962.  https://doi.org/10.1371/journal.pone.0139962.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Pirola L, Ferraz JC. Role of pro- and anti-inflammatory phenomena in the physiopathology of type 2 diabetes and obesity. World J Biol Chem. 2017;8:120–8.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rebeca García Macedo
    • 1
  1. 1.Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional, Siglo XXIMexico CityMexico

Personalised recommendations