Advertisement

Mulitifractal Analysis with Lacunarity for Microcalcification Segmentation

  • Ines Slim
  • Hanen Bettaieb
  • Asma Ben Abdallah
  • Imen Bhouri
  • Mohamed Hedi Bedoui
Conference paper
Part of the Advances in Predictive, Preventive and Personalised Medicine book series (APPPM, volume 10)

Abstract

The aim of this study is the microcalcification segmentation in digital mammograms. We propose two different methods which are based on the combination of the multifractal analysis with, respectively, the fractal analysis and then with the lacunarity. Our approach consists of two steps. On the first stage, we created the “α_image.” This image was constructed by singularity coefficient deduced from multifractal spectrum of the original image. On the second stage, in order to enhance the visualization of microcalcifications, we create the “f(α)_image” based on global regularity measure of “α_image.” Two different techniques are used: the box counting (BC) used to calculate fractal dimension and the gliding box method used to measure lacunarity. These techniques were applied in order to compare results. Our proposed approaches were tested on mammograms from “MiniMIAS database.” Results demonstrate that microcalcifications were successfully segmented.

Keywords

Multifractal Fractal Lacunarity Microcalcifications Segmentation 

References

  1. 1.
    Centers for Disease Control and Prevention, Cancer Among Women (2015.) Available from: http://www.cdc.gov/cancer/dcpc/data/women.html. Accessed 15 Dec 2017
  2. 2.
    Elmore JG (2016) Breast cancer screening: balancing evidence with culture, politics, money, and media. Breast Cancer Screen:1–27Google Scholar
  3. 3.
    Pretorius ES, Solomon JA (2010) Radiology secrets plus E-book. Elsevier Health Sciences, LondonGoogle Scholar
  4. 4.
    Tabar L, Duffy S, Burhenne L (1993) New Swedish breast cancer detection results for women aged 40–49. Cancer 72(suppl):1437.  https://doi.org/10.1002/1097-0142(19930815) CrossRefPubMedGoogle Scholar
  5. 5.
    Gal Y, Mehnert A, Bradley A, Kennedy D, Crozier S (2009) Feature and classifier selection for automatic classification of lesions in dynamic contrast-enhanced MRI of the breast. In: Proceedings of the 2009 digital image computing: techniques and applications, pp 132–139Google Scholar
  6. 6.
    Vyborny CJ, Schmidt RA (1994) Technical image quality and the visibility of mammographic detail. In: Haus AG, Yaffe MJ (eds) Syllabus: a categorical course in physics-technical aspects of breast imaging. Radiological Society of North America, Oak Book III, pp 103–111Google Scholar
  7. 7.
    Soares F, Janela F, Seabra J, Pereira M, Freire MM (2010) Self-similarity classification of breast tumour lesions on dynamic contrast-enhanced magnetic resonance images – special session on breast CAD. Int J Comput Assist Radiol Surg 5(1):S203–S205Google Scholar
  8. 8.
    Soares F, Freire MM, Pereira M, Janela F, Seabra J (2009) Towards the detection of microcalcifications on mammograms through Multifractal Detrended Fluctuation Analysis. In: Proceedings of the IEEE Pacific rim conference on communications, computers and signal processing. pp 677–681Google Scholar
  9. 9.
    George LE, Mohammed EZ (2011, October) Cancer tissues recognition system using box counting method and artificial neural network. In: Soft Computing and Pattern Recognition (SoCPaR), 2011 International conference of pp. 5–9. IEEEGoogle Scholar
  10. 10.
    George LE, Sager KH (2007, November) Breast cancer diagnosis using multi-fractal dimension spectra. In: Signal processing and communications, 2007. ICSPC 2007. IEEE International Conference on pp. 592–595. IEEEGoogle Scholar
  11. 11.
    Soares F, Janela F, Pereira M, Seabra J, Freire M (2013) 3D lacunarity in multifractal analysis of breast tumor lesions in dynamic contrast-enhanced magnetic resonance imagingGoogle Scholar
  12. 12.
    Penn A, Thompson S, Schnall M, Loew M, Bolinger L (2000) Fractal discrimination of MRI breast masses using multiple segmentations. In: Proceedings of SPIE, vol. 3979, pp 959–966Google Scholar
  13. 13.
    Peitgen HO, Jürgens H, Saupe D (1993) Chaos and Fractals: New Frontiers of Sciences. Springer, New YorkGoogle Scholar
  14. 14.
    Guo Q, Shao J, Ruiz V (2009) Characterization and classification of tumor lesions using computerized fractal-based texture analysis and support vector machines in digital mammograms. Int J Comput Assist Radiol Surg 4(1):11–25CrossRefGoogle Scholar
  15. 15.
    Dobrescu R, Ichim L, Crişan D (2013) Diagnosis of breast cancer from mammograms by using fractal measures. Int J Med Imag 1(2):32–38CrossRefGoogle Scholar
  16. 16.
    Serrano, R. C., Conci, A., De Melo, R. H. C., & Lima, R. C. F. (2009, June). On using lacunarity for diagnosis of breast diseases considering thermal images. In: Systems, Signals and Image Processing, 2009. IWSSIP 2009. 16th International conference on (pp. 1–4). IEEEGoogle Scholar
  17. 17.
    Lopes R, Dubois P, Bhouri I, Bedoui M, Maouche S, Betrouni N (2011) Local fractal and multifractal features for volumic texture characterization. Pattern Recogn 44(8):1690–1697CrossRefGoogle Scholar
  18. 18.
    Kestener P (2003) Analyse multifractale 2D et 3D à l’aide de la transformation en ondelettes: application en mammographie et en turbulence développée. Sciences de l’Ingenieur. Universite de Bordeaux I, Bordeaux, p 225Google Scholar
  19. 19.
    Lopes R, Betrouni N (2009) Fractal and multifractal analysis: a review. Med Image Anal 13(4):634–649CrossRefGoogle Scholar
  20. 20.
    Lopes R, Dubois P, Makni N, Szurhaj W, Maouche S, Betrouni N (2008) Classification of brain SPECT imaging using 3D local multifractal spectrum for epilepsy detection. Int J Comput Assist Radiol Surg 3(3–4):341–346CrossRefGoogle Scholar
  21. 21.
    Hanen A, Imen B, Asma BA, Patrick D, Hédi BM (2009) Multifractal modelling and 3D lacunarity analysis. Phys Lett A 373(40):3604–3609CrossRefGoogle Scholar
  22. 22.
    Tricot C (2003) A model for rough surfaces. Compos Sci Technol 63(8):1089–1096CrossRefGoogle Scholar
  23. 23.
    Pesquet-Popescu B, Véhel JL (2002) Stochastic fractal models for image processing. IEEE Signal Process Mag 19(5):48–62CrossRefGoogle Scholar
  24. 24.
    Reljin I, Reljin B (2002) Fractal geometry and multifractals in analyzing and processing medical data and images. Arch Oncol 10(4):283–293CrossRefGoogle Scholar
  25. 25.
    Turner MJ, Blackledge JM, Andrews PR (1998) Fractal geometry in digital imaging. Academic, New YorkGoogle Scholar
  26. 26.
    Russel D, Hanson J, Ott E (1980) Dimension of strange attractors. Phys Rev Lett 45(14):1175–1178CrossRefGoogle Scholar
  27. 27.
    Allain C, Cloitre M (1991) Characterising the lacunarity of random and deterministic fractal sets. Phys Rev A 44:3552–3558CrossRefGoogle Scholar
  28. 28.
    Suckling J. The MiniMIAS database, Mammographic Image Analysis Society—MIAS. www.wiau.man.ac.uk/services /MIAS/MIAScom.html

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ines Slim
    • 1
  • Hanen Bettaieb
    • 1
  • Asma Ben Abdallah
    • 1
  • Imen Bhouri
    • 2
  • Mohamed Hedi Bedoui
    • 1
  1. 1.Laboratory of Technology and medical imagery, TIMFaculty of MedecineMonastirTunisia
  2. 2.Multifractals and wavelet research unitFaculty of sciencesMonastirTunisia

Personalised recommendations