Advertisement

Seizure Onset Detection in EEG Signals Based on Entropy from Generalized Gaussian PDF Modeling and Ensemble Bagging Classifier

  • Antonio Quintero-RincónEmail author
  • Carlos D’Giano
  • Hadj Batatia
Conference paper
Part of the Advances in Predictive, Preventive and Personalised Medicine book series (APPPM, volume 10)

Abstract

This paper proposes a new algorithm for epileptic seizure onset detection in EEG signals. The algorithm relies on the measure of the entropy of observed data sequences. Precisely, the data is decomposed into different brain rhythms using wavelet multi-scale transformation. The resulting coefficients are represented using their generalized Gaussian distribution. The proposed algorithm estimates the parameters of the distribution and the associated entropy. Next, an ensemble bagging classifier is used to performs the seizure onset detection using the entropy of each brain rhythm, by discriminating between seizure and non-seizure. Preliminary experiments with 105 epileptic events suggest that the proposed methodology is a powerful tool for detecting seizures in epileptic signals in terms of classification accuracy, sensitivity and specificity.

Keywords

Entropy Generalized Gaussian distribution Ensemble bagging classifier Wavelet filter banks EEG Epilepsy 

References

  1. 1.
    Acharya U, Oh SL, Hagiwara Y, Tan J, Adeli H (2018) Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput Biol Med 100:270–278PubMedCrossRefGoogle Scholar
  2. 2.
    Ashtawy H, Mahapatra N (2015) BGN-score and BSN-score: bagging and boosting based ensemble neural networks scoring functions for accurate binding affinity prediction of protein-ligand complexes. BMC Bioinf 4:S8CrossRefGoogle Scholar
  3. 3.
    Bishop CM (2006) Pattern recognition and machine learning. Information science and statistics. Springer, SecaucusGoogle Scholar
  4. 4.
    Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140Google Scholar
  5. 5.
    Bruzzo A, Gesierich B, Santi M, Tassinari C, Birbaumer N, Rubboli G (2008) Permutation entropy to detect vigilance changes and preictal states from scalp EEG in epileptic patients. A preliminary study. Neurol Sci 29(1):3–9PubMedCrossRefGoogle Scholar
  6. 6.
    Cover TM, Thomas JA (2006) Elements of information theory. Wiley, HobokenGoogle Scholar
  7. 7.
    Diambra L, de Figueiredo JB, Malta C (1999) Epileptic activity recognition in EEG recording. Phys A 273(3):495–505CrossRefGoogle Scholar
  8. 8.
    Direito B, Teixeira C, Ribeiro B, Castelo-Branco M, Sales F, Dourado A (2012) Modeling epileptic brain states using EEG spectral analysis and topographic mapping. J Neurosci Methods 210(2):220–229PubMedCrossRefGoogle Scholar
  9. 9.
    Flach P (2012) Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press, New YorkCrossRefGoogle Scholar
  10. 10.
    Goldberger A, Amaral L, Glass L, Hausdorff J, Ivanov P, Mark R, Mietus J, Moody G, Peng CK, Stanley H (2000) Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 101(23):215–220CrossRefGoogle Scholar
  11. 11.
    Hosseini M, Pompili D, Elisevich K, Soltanian-Zadeh H (2018) Random ensemble learning for EEG classification. Artif Intell Med 84:146–158PubMedCrossRefGoogle Scholar
  12. 12.
    Iasemidis LD, Sackellares JC (1996) Chaos theory and epilepsy. Neuroscientist 2:118–126CrossRefGoogle Scholar
  13. 13.
    Kumar TS, Kanhanga V, Pachori RB (2015) Classification of seizure and seizure-free EEG signals using local binary patterns. Biomed Signal Process Control 15:33–40CrossRefGoogle Scholar
  14. 14.
    Li P, Yan C, Karmakar C, Liu C (2015) Distribution entropy analysis of epileptic EEG signals. In: Conference of the IEEE Engineering in Medicine and Biology, pp 4170–4173Google Scholar
  15. 15.
    Liang SF, Wang HC, Chang WL (2010) Combination of EEG complexity and spectral analysis for epilepsy diagnosis and seizure detection. EURASIP J Adv Signal Process 2010:853434CrossRefGoogle Scholar
  16. 16.
    Meng L, Frei MG, Osorio I, Strang G, Nguyen TQ (2004) Gaussian mixture models of ECoG signal features for improved detection of epileptic seizures. Med Eng Phys 26(5):379–393PubMedCrossRefGoogle Scholar
  17. 17.
    Mormann F, Andrzejak RG, Elger CE, Lehnertz K (2007) Seizure prediction: the long and winding road. Brain 130:314–333PubMedCrossRefGoogle Scholar
  18. 18.
    Nadarajah S (2005) A generalized normal distribution. J Appl Stat 32(7):685–694CrossRefGoogle Scholar
  19. 19.
    Nasehi S, Pourghassem H (2013) A novel fast epileptic seizure onset detection algorithm using general tensor discriminant analysis. J Clin Neurophysiol 30(4):362–370PubMedCrossRefGoogle Scholar
  20. 20.
    Niedermeyer E, da Silva FL (2010) Electroencephalography basic principles and clinical applications and related fields. Lippincott Williams and Wilkins, PhiladelphiaGoogle Scholar
  21. 21.
    Ocak H (2009) Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Syst Appl 36(2):2027–2036CrossRefGoogle Scholar
  22. 22.
    Paivinen N, Lammi S, Pitkanen A, Nissinen J, Penttonen M, Gronfors T (2005) Epileptic seizure detection: a nonlinear viewpoint. Comput Methods Prog Biomed 79(2):151–159CrossRefGoogle Scholar
  23. 23.
    Qaraqe M, Ismail M, Serpedin E (2015) Band-sensitive seizure onset detection via CSP-enhanced EEG features. Epilepsy Behav 50:77–87PubMedCrossRefGoogle Scholar
  24. 24.
    Quintero-Rincón A, Pereyra M, D’Giano C, Batatia H, Risk M (2016) A new algorithm for epilepsy seizure onset detection and spread estimation from EEG signals. J Phys Conf Ser 705(1):012–032Google Scholar
  25. 25.
    Quintero-Rincón A, Prendes J, Pereyra M, Batatia H, Risk M (2016) Multivariate Bayesian classification of epilepsy EEG signals. In: 2016 IEEE 12th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP), pp 1–5Google Scholar
  26. 26.
    Quintero-Rincón A, Pereyra M, D’giano C, Batatia H, Risk M (2017) A visual EEG epilepsy detection method based on a wavelet statistical representation and the Kullback-Leibler divergence. IFMBE Proc 60:13–16CrossRefGoogle Scholar
  27. 27.
    Quintero-Rincón A, D’Giano C, Risk M (2018) Epileptic seizure prediction using Pearson’s product-moment correlation coefficient of a linear classifier from generalized Gaussian modeling. Neurología Argentina 10(4):201–217CrossRefGoogle Scholar
  28. 28.
    Quintero-Rincón A, Pereyra M, D’Giano C, Risk M, Batatia H (2018) Fast statistical model-based classification of epileptic EEG signals. Biocybern Biomed Eng 4(38):877–889CrossRefGoogle Scholar
  29. 29.
    Quyen MLV, Bragin A (2007) Analysis of dynamic brain oscillations methodological advances. Trends Neurosci 30(7):365–373CrossRefGoogle Scholar
  30. 30.
    Rabbi AF, Fazel-Rezai R (2012) A fuzzy logic system for seizure onset detection in intracranial EEG. Comput Intell Neurosci 2012:705140PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Rapp PE, Zimmerman ID, Albano AM, de Guzman GC, Greenbaun NN, Bashore TR (1986) Experimental studies of chaotic neural behavior: cellular activity and electroencephalographic signals. In: Springer, vol 66, pp 175–205. Springer, Berlin/HeidelbergGoogle Scholar
  32. 32.
    Rosso O, Martin M, Figliola A, Keller K, Plastino A (2006) EEG analysis using wavelet-based information tools. J Neurosci Methods 153(2):163–182PubMedCrossRefGoogle Scholar
  33. 33.
    Sammut C, Webb GI (2017) Encyclopedia of machine learning and data mining. Springer, New YorkCrossRefGoogle Scholar
  34. 34.
    Seni G, Elder J (2010) Ensemble methods in data mining improving accuracy through combining predictions. Morgan and Claypool Publishers, CaliforniaCrossRefGoogle Scholar
  35. 35.
    Shoeb A, Edwards H, Connolly J, Bourgeois B, Treves ST, Guttagf J (2004) Patient-specific seizure onset detection. Epilepsy Behav 5:483–498PubMedCrossRefGoogle Scholar
  36. 36.
    Sorensen TL, Olsen UL, Conradsen I, Henriksen J, Kjaer TW, Thomsen CE, Sorensen HBD (2010) Automatic epileptic seizure onset detection using matching pursuit: a case study. In: 32nd Annual International Conference of the IEEE EMB, pp 3277–3280Google Scholar
  37. 37.
    Theodoridis S (2015) Machine learning: a Bayesian and optimizationp perspective. Academic Press, LondonGoogle Scholar
  38. 38.
    Tuyisenge V, Trebaul L, Bhattacharjee M, Chanteloup-Foret B, Saubat-Guigui C, Mîndruta I, Rheims S, Maillard L, Kahane P, Taussig D, David O (2018) Automatic bad channel detection in intracranial electroencephalographic recordings using ensemble machine learning. Clin Neurophysiol 129(3):548–554PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Wang L, Xue W, Li Y, Luo M, Huang J, Cui W, Huang C (2017) Automatic epileptic seizure detection in EEG signals using multi-domain feature extraction and nonlinear analysis. Entropy 19:222CrossRefGoogle Scholar
  40. 40.
    West BJ (2013) Fractal physiology and chaos in medicine. World Scientific Publishing Company, Singapore/LondonCrossRefGoogle Scholar
  41. 41.
    Yu Z, Deng Z, Wong H, Tan L (2010) Identifying protein-kinase-specific phosphorylation sites based on the bagging-adaboost ensemble approach. IEEE Trans NanoBiosci 9(2):132–143CrossRefGoogle Scholar
  42. 42.
    Zandi A, Dumont G, Javidan M, Tafreshi R (2009) An entropy-based approach to predict seizures in temporal lobe epilepsy using scalp EEG. In: Annual International Conference of the IEEE Engineering in Medicine and Biology, pp 228–231Google Scholar
  43. 43.
    Zhou ZH (2012) Ensemble methods foundations and algorithms. Chapman and Hall/CRC, LondonCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Antonio Quintero-Rincón
    • 1
    Email author
  • Carlos D’Giano
    • 2
  • Hadj Batatia
    • 3
  1. 1.Department of BioengineeringInstituto Tecnológico de Buenos Aires (ITBA)Buenos AiresArgentina
  2. 2.Centro Integral de Epilepsia y TelemetríaFundación Lucha contra las Enfermedades Neurólogicas Infantiles (FLENI)Buenos AiresArgentina
  3. 3.IRITUniversity of ToulouseToulouseFrance

Personalised recommendations