Advertisement

Multiphase Isenthalpic Flash Using the Conventional Flash Framework

  • Duncan PatersonEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The conventional phase equilibrium problem is isothermal, isobaric flash (\((T,P,\varvec{z})\) specified). However there are a number of other, state function-based flash problems which are commonly encountered in process simulation. A number of these are given in Table  1.2. The isenthalpic flash problem is useful for adiabatic expansion problems and for steady-state flow simulation. The problem specifications are \((H,P,\varvec{z})\).

References

  1. Agarwal RK et al (1991) Multiphase multicomponent isenthalpic flash calculations. J Can Pet Technol 30(03). ISSN: 0021-9487.  https://doi.org/10.2118/91-03-07
  2. Boston JF, Britt HI (1978) A radically different formulation and solution of the single-stage flash problem. Comput Chem Eng 2(2–3):109–122. ISSN: 00981354.  https://doi.org/10.1016/0098-1354(78)80015-5CrossRefGoogle Scholar
  3. Brantferger KM, Pope GA, Sepehrnoori K (1991) Development of a thermodynamically consistent, fully implicit, equation-of-state, compositional steamflood simulator. In: SPE symposium on reservoir simulation. Society of petroleum engineers. ISBN: 978-1-55563-535-0.  https://doi.org/10.2118/21253-MS
  4. Eubank PT et al (1994) Measurement and prediction of three-phase water/hydrocarbon equilibria. Fluid Ph Equilib 102(2):181–203. ISSN: 03783812.  https://doi.org/10.1016/0378-3812(94)87076-4CrossRefGoogle Scholar
  5. Gupta AK, Bishnoi PR, Kalogerakis N (1990) Simultaneous multiphase isothermal/isenthalpic flash and stability calculations for reacting/non-reacting systems. Gas Sep Purif 4(4):215–222. ISSN: 0950-4214.  https://doi.org/10.1016/0950-4214(90)80045-MCrossRefGoogle Scholar
  6. Heidari M, Nghiem LX, Maini BB (2014) Improved isenthalpic multiphase flash calculations for thermal compositional simulators. In: SPE heavy oil conference-Canada. Society of petroleum engineers. ISBN: 978-1-61399-334-7.  https://doi.org/10.2118/170029-MS
  7. Michelsen ML (1982a) The isothermal flash problem. Part I. stability. Fluid Ph Equilib 9(1):1–19. ISSN: 03783812.  https://doi.org/10.1016/0378-3812(82)85001-2CrossRefGoogle Scholar
  8. Michelsen ML (1982b) The isothermal flash problem. Part II. Phase-split calculation. Fluid Ph Equilib 9(1):21–40. ISSN: 03783812.  https://doi.org/10.1016/0378-3812(82)85002-4CrossRefGoogle Scholar
  9. Michelsen ML (1987) Multiphase isenthalpic and isentropic flash algorithms. Fluid Ph Equilib 33(1–2):13–27. ISSN: 0378-3812.  https://doi.org/10.1016/0378-3812(87)87002-4CrossRefGoogle Scholar
  10. Michelsen ML (1994) Calculation of multiphase equilibrium. Comput Chem Eng 18(7):545–550. ISSN: 00981354.  https://doi.org/10.1016/0098-1354(93)E0017-4CrossRefGoogle Scholar
  11. Michelsen ML (1999) State function based flash specifications. Fluid Ph Equilib 158–160:617–626. ISSN: 0378-3812.  https://doi.org/10.1016/S0378-3812(99)00092-8CrossRefGoogle Scholar
  12. Michelsen ML, Mollerup JM (2007) Thermodynamic models: fundamentals & computational aspects, 2nd edn. Tie-Line publications, Holte. ISBN: 87-989961-3-4Google Scholar
  13. Paterson D et al (2016) Robust and efficient isenthalpic flash algorithms for thermal recovery of heavy oil. In: SPE improved oil recovery conference. Society of petroleum engineers. ISBN: 978-1-61399-439-9.  https://doi.org/10.2118/179652-MS
  14. Peng DY, Robinson DB (1976) A new two-constant equation of state. Ind Eng Chem Fundam 15(1):59–64.  https://doi.org/10.1021/i160057a011CrossRefGoogle Scholar
  15. Rasmussen CP et al (2006) Increasing the computational speed of flash calculations with applications for compositional, transient simulations. SPE Reserv Eval Eng 9(01):32–38. ISSN: 1094-6470.  https://doi.org/10.2118/84181-PACrossRefGoogle Scholar
  16. Soave G (1972) Equilibrium constants from a modified Redlich-Kwong equation of state. Chem Eng Sci 27(6):1197–1203. ISSN: 0009-2509.  https://doi.org/10.1016/0009-2509(72)80096-4CrossRefGoogle Scholar
  17. Sun H et al (2017) An improved isenthalpic flash algorithm based on maximization of entropy. Fluid Ph Equilib ISSN: 03783812.  https://doi.org/10.1016/j.fluid.2017.01.007CrossRefGoogle Scholar
  18. Zhu D, Okuno R (2014) A robust algorithm for isenthalpic flash of narrow-boiling fluids. Fluid Ph Equilib 379:26–51. ISSN: 0378-3812.  https://doi.org/10.1016/j.fluid.2014.07.003, http://www.sciencedirect.com/science/article/pii/S037838121400377XCrossRefGoogle Scholar
  19. Zhu D, Okuno R (2016) Multiphase isenthalpic flash integrated with stability analysis. Fluid Ph Equilib 423:203–219. ISSN: 03783812.  https://doi.org/10.1016/j.fluid.2016.04.005, http://linkinghub.elsevier.com/retrieve/pii/S0378381216301716CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryTechnical University of DenmarkKongens LyngbyDenmark

Personalised recommendations