Advertisement

Pathogenesis of B-Cell Lymphoma

  • Rabea Wagener
  • Cristina López
  • Reiner SiebertEmail author
Chapter

Abstract

B-cell lymphomas are hematological malignancies, which develop from B-cells at different maturation stages by the acquisition of genetic changes. These genetic changes are at least in part introduced through somatic mutation machineries which B-cells need to fulfill their physiologic tasks in adaptive immunity. The transformed malignant B-cells are frozen at distinct maturation stages, a feature which aids to their classification based on morphologic, immunophenotypic, transcriptional, and epigenetic characteristics. Overall, the pathogenesis of B-cell lymphomas is assumed to be a multifactorial process to which components of germline predisposition, environmental factors (e.g. viruses), physiological processes, microenvironmental stimuli, and somatic alterations interactively can contribute and which ultimately lead to a clonal evolution of tumor-initiating cells. The present chapter will outline key principles and general mechanisms underlying the pathogenesis of B-cell non-Hodgkin lymphomas in children and adolescents.

Keywords

Ig remodeling V(D)J Somatic hypermutation (SHM) Class switch recombination (CSR) BCR Transcription factors Chemokines Virus IG rearrangements Oncogenes Tumor suppressor genes 

Notes

Acknowledgment

The author’s own work on B-cell lymphomas is supported by the BMBF, the Deutsche Krebshilfe, the Medical Faculty of the Ulm University, and the KinderKrebsInitiative Buchholz Holm-Seppensen. The authors want to acknowledge and excuse to all colleagues, whose seminal contributions to the topic could not be quoted appropriately due to space constraints.

References

  1. 1.
    Kuppers R. Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer. 2005;5(4):251–62. nrc1589 [pii].PubMedGoogle Scholar
  2. 2.
    Moriyama T, Metzger ML, Wu G, et al. Germline genetic variation in ETV6 and risk of childhood acute lymphoblastic leukaemia: a systematic genetic study. Lancet Oncol. 2015;16(16):1659–66.  https://doi.org/10.1016/S1470-2045(15)00369-1.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Kuppers R. B cells under influence: transformation of B cells by Epstein-Barr virus. Nat Rev Immunol. 2003;3(10):801–12.  https://doi.org/10.1038/nri1201.PubMedGoogle Scholar
  4. 4.
    Kulis M, Heath S, Bibikova M, et al. Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nat Genet. 2012;44(11):1236–42.  https://doi.org/10.1038/ng.2443.PubMedGoogle Scholar
  5. 5.
    Moss DJ, Lutzky VP. EBV-specific immune response: early research and personal reminiscences. Curr Top Microbiol Immunol. 2015;390(Pt 1):23–42.  https://doi.org/10.1007/978-3-319-22822-8_3.PubMedGoogle Scholar
  6. 6.
    Kuppers R, Dalla-Favera R. Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene. 2001;20(40):5580–94.  https://doi.org/10.1038/sj.onc.1204640.PubMedGoogle Scholar
  7. 7.
    Lossos IS, Alizadeh AA, Eisen MB, et al. Ongoing immunoglobulin somatic mutation in germinal center B cell-like but not in activated B cell-like diffuse large cell lymphomas. Proc Natl Acad Sci U S A. 2000;97(18):10209–13.  https://doi.org/10.1073/pnas.180316097.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Schroeder HW Jr, Cavacini L. Structure and function of immunoglobulins. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S41–52.  https://doi.org/10.1016/j.jaci.2009.09.046.PubMedPubMedCentralGoogle Scholar
  9. 9.
    De Groot C, Kapsenberg ML, Leene W. Observations on transmembrane structures of surface immunoglobulin in the plasma membrane of B lymphocytes. Biochim Biophys Acta. 1982;689(2):275–82. 0005-2736(82)90260-7 [pii].PubMedGoogle Scholar
  10. 10.
    Kehry M, Ewald S, Douglas R, et al. The immunoglobulin mu chains of membrane-bound and secreted IgM molecules differ in their C-terminal segments. Cell. 1980;21(2):393–406. 0092-8674(80)90476-6 [pii].PubMedGoogle Scholar
  11. 11.
    Lieber MR, Hesse JE, Mizuuchi K, et al. Lymphoid V(D)J recombination: nucleotide insertion at signal joints as well as coding joints. Proc Natl Acad Sci U S A. 1988;85(22):8588–92.PubMedPubMedCentralGoogle Scholar
  12. 12.
    van Gent DC, Ramsden DA, Gellert M. The RAG1 and RAG2 proteins establish the 12/23 rule in V(D)J recombination. Cell. 1996;85(1):107–13. S0092-8674(00)81086-7 [pii].PubMedGoogle Scholar
  13. 13.
    Tonegawa S. Somatic generation of antibody diversity. Nature. 1983;302(5909):575–81.PubMedGoogle Scholar
  14. 14.
    Levy NS, Malipiero UV, Lebecque SG, et al. Early onset of somatic mutation in immunoglobulin VH genes during the primary immune response. J Exp Med. 1989;169(6):2007–19.PubMedGoogle Scholar
  15. 15.
    Muramatsu M, Sankaranand VS, Anant S, et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem. 1999;274(26):18470–6.PubMedGoogle Scholar
  16. 16.
    Pasqualucci L, Guglielmino R, Houldsworth J, et al. Expression of the AID protein in normal and neoplastic B cells. Blood. 2004;104(10):3318–25.  https://doi.org/10.1182/blood-2004-04-1558.PubMedGoogle Scholar
  17. 17.
    Lieber MR, Yu K, Raghavan SC. Roles of nonhomologous DNA end joining, V(D)J recombination, and class switch recombination in chromosomal translocations. DNA Repair (Amst). 2006;5(9–10):1234–45. S1568-7864(06)00154-6 [pii].Google Scholar
  18. 18.
    Yan CT, Boboila C, Souza EK, et al. IgH class switching and translocations use a robust non-classical end-joining pathway. Nature. 2007;449(7161):478–82. nature06020 [pii].PubMedGoogle Scholar
  19. 19.
    Honjo T, Kinoshita K, Muramatsu M. Molecular mechanism of class switch recombination: linkage with somatic hypermutation. Annu Rev Immunol. 2002;20:165–96.  https://doi.org/10.1146/annurev.immunol.20.090501.112049.PubMedGoogle Scholar
  20. 20.
    Tsujimoto Y, Louie E, Bashir MM, et al. The reciprocal partners of both the t(14; 18) and the t(11; 14) translocations involved in B-cell neoplasms are rearranged by the same mechanism. Oncogene. 1988;2(4):347–51.PubMedGoogle Scholar
  21. 21.
    Tsujimoto Y, Gorham J, Cossman J, et al. The t(14;18) chromosome translocations involved in B-cell neoplasms result from mistakes in VDJ joining. Science. 1985;229(4720):1390–3.PubMedGoogle Scholar
  22. 22.
    Jager U, Bocskor S, Le T, et al. Follicular lymphomas’ BCL-2/IgH junctions contain templated nucleotide insertions: novel insights into the mechanism of t(14;18) translocation. Blood. 2000;95(11):3520–9.PubMedGoogle Scholar
  23. 23.
    Medina KL, Singh H. Genetic networks that regulate B lymphopoiesis. Curr Opin Hematol. 2005;12(3):203–9. 00062752-200505000-00002 [pii].PubMedGoogle Scholar
  24. 24.
    Rajewsky K. Clonal selection and learning in the antibody system. Nature. 1996;381(6585):751–8.  https://doi.org/10.1038/381751a0.PubMedGoogle Scholar
  25. 25.
    Corbett SJ, Tomlinson IM, Sonnhammer EL, et al. Sequence of the human immunoglobulin diversity (D) segment locus: a systematic analysis provides no evidence for the use of DIR segments, inverted D segments, “minor” D segments or D-D recombination. J Mol Biol. 1997;270(4):587–97. S0022-2836(97)91141-4 [pii].PubMedGoogle Scholar
  26. 26.
    Ravetch JV, Siebenlist U, Korsmeyer S, et al. Structure of the human immunoglobulin mu locus: characterization of embryonic and rearranged J and D genes. Cell. 1981;27(3 Pt 2):583–91. 0092-8674(81)90400-1 [pii].PubMedGoogle Scholar
  27. 27.
    Tiegs SL, Russell DM, Nemazee D. Receptor editing in self-reactive bone marrow B cells. J Exp Med. 1993;177(4):1009–20.PubMedGoogle Scholar
  28. 28.
    Hieter PA, Maizel JV Jr, Leder P. Evolution of human immunoglobulin kappa J region genes. J Biol Chem. 1982;257(3):1516–22.PubMedGoogle Scholar
  29. 29.
    Schable KF, Zachau HG. The variable genes of the human immunoglobulin kappa locus. Biol Chem Hoppe Seyler. 1993;374(11):1001–22.PubMedGoogle Scholar
  30. 30.
    Kawasaki K, Minoshima S, Nakato E, et al. One-megabase sequence analysis of the human immunoglobulin lambda gene locus. Genome Res. 1997;7(3):250–61.PubMedGoogle Scholar
  31. 31.
    Vasicek TJ, Leder P. Structure and expression of the human immunoglobulin lambda genes. J Exp Med. 1990;172(2):609–20.PubMedGoogle Scholar
  32. 32.
    Liu YJ, Zhang J, Lane PJ, et al. Sites of specific B cell activation in primary and secondary responses to T cell-dependent and T cell-independent antigens. Eur J Immunol. 1991;21(12):2951–62.  https://doi.org/10.1002/eji.1830211209.PubMedGoogle Scholar
  33. 33.
    Reed JC. Bcl-2-family proteins and hematologic malignancies: history and future prospects. Blood. 2008;111(7):3322–30.  https://doi.org/10.1182/blood-2007-09-078162.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Shaffer AL, Yu X, He Y, et al. BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity. 2000;13(2):199–212. S1074-7613(00)00020-0 [pii].PubMedGoogle Scholar
  35. 35.
    MacLennan IC. Germinal centers. Annu Rev Immunol. 1994;12:​117–39.  https://doi.org/10.1146/annurev.iy.12.040194.​001001.PubMedGoogle Scholar
  36. 36.
    Allen CD, Ansel KM, Low C, et al. Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nat Immunol. 2004;5(9):943–52.  https://doi.org/10.1038/ni1100.PubMedGoogle Scholar
  37. 37.
    Victora GD, Schwickert TA, Fooksman DR, et al. Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell. 2010;143(4):592–605.  https://doi.org/10.1016/j.cell.2010.10.032.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Goossens T, Klein U, Kuppers R. Frequent occurrence of deletions and duplications during somatic hypermutation: implications for oncogene translocations and heavy chain disease. Proc Natl Acad Sci U S A. 1998;95(5):2463–8.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Kuppers R, Zhao M, Hansmann ML, et al. Tracing B cell development in human germinal centres by molecular analysis of single cells picked from histological sections. EMBO J. 1993;12(13):4955–67.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Kosco-Vilbois MH. Are follcicular dendritic cells really good for nothing? Nat Rev Immunol. 2003;3:764–9.PubMedGoogle Scholar
  41. 41.
    Calado DP, Sasaki Y, Godinho SA, et al. The cell-cycle regulator c-Myc is essential for the formation and maintenance of germinal centers. Nat Immunol. 2012;13(11):1092–100.  https://doi.org/10.1038/ni.2418.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Dominguez-Sola D, Victora GD, Ying CY, et al. The proto-oncogene MYC is required for selection in the germinal center and cyclic reentry. Nat Immunol. 2012;13(11):1083–91.  https://doi.org/10.1038/ni.2428.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Cobaleda C, Schebesta A, Delogu A, et al. Pax5: the guardian of B cell identity and function. Nat Immunol. 2007;8(5):463–70. ni1454 [pii].PubMedGoogle Scholar
  44. 44.
    Falini B, Fizzotti M, Pucciarini A, et al. A monoclonal antibody (MUM1p) detects expression of the MUM1/IRF4 protein in a subset of germinal center B cells, plasma cells, and activated T cells. Blood. 2000;95(6):2084–92.PubMedGoogle Scholar
  45. 45.
    Angelin-Duclos C, Cattoretti G, Lin KI, et al. Commitment of B lymphocytes to a plasma cell fate is associated with Blimp-1 expression in vivo. J Immunol. 2000;165(10):5462–71.PubMedGoogle Scholar
  46. 46.
    Manz RA, Hauser AE, Hiepe F, et al. Maintenance of serum antibody levels. Annu Rev Immunol. 2005;23:367–86.  https://doi.org/10.1146/annurev.immunol.23.021704.115723.PubMedGoogle Scholar
  47. 47.
    McHeyzer-Williams M, Okitsu S, Wang N, et al. Molecular programming of B cell memory. Nat Rev Immunol. 2011;12(1):24–34.  https://doi.org/10.1038/nri3128.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Casamayor-Palleja M, Feuillard J, Ball J, et al. Centrocytes rapidly adopt a memory B cell phenotype on co-culture with autologous germinal centre T cell-enriched preparations. Int Immunol. 1996;8(5):737–44.PubMedGoogle Scholar
  49. 49.
    Han JH, Akira S, Calame K, et al. Class switch recombination and somatic hypermutation in early mouse B cells are mediated by B cell and Toll-like receptors. Immunity. 2007;27(1):64–75. S1074-7613(07)00330-5 [pii].PubMedPubMedCentralGoogle Scholar
  50. 50.
    Mond JJ, Lees A, Snapper CM. T cell-independent antigens type 2. Annu Rev Immunol. 1995;13:655–92.  https://doi.org/10.1146/annurev.iy.13.040195.003255.PubMedGoogle Scholar
  51. 51.
    Toellner KM, Jenkinson WE, Taylor DR, et al. Low-level hypermutation in T cell-independent germinal centers compared with high mutation rates associated with T cell-dependent germinal centers. J Exp Med. 2002;195(3):383–9.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Martin F, Kearney JF. B1 cells: similarities and differences with other B cell subsets. Curr Opin Immunol. 2001;13(2):195–201. S0952-7915(00)00204-1 [pii].PubMedGoogle Scholar
  53. 53.
    Lopes-Carvalho T, Kearney JF. Development and selection of marginal zone B cells. Immunol Rev. 2004;197:192–205. 112 [pii].PubMedGoogle Scholar
  54. 54.
    Oliver AM, Martin F, Gartland GL, et al. Marginal zone B cells exhibit unique activation, proliferative and immunoglobulin secretory responses. Eur J Immunol. 1997;27(9):2366–74.  https://doi.org/10.1002/eji.1830270935.PubMedGoogle Scholar
  55. 55.
    Jacob J, Kassir R, Kelsoe G. In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. I. The architecture and dynamics of responding cell populations. J Exp Med. 1991;173(5):1165–75.PubMedGoogle Scholar
  56. 56.
    Kaji T, Ishige A, Hikida M, et al. Distinct cellular pathways select germline-encoded and somatically mutated antibodies into immunological memory. J Exp Med. 2012;209(11):2079–97.  https://doi.org/10.1084/jem.20120127.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Klein U, Dalla-Favera R. Germinal centres: role in B-cell physiology and malignancy. Nat Rev Immunol. 2008;8(1):22–33. nri2217 [pii].PubMedGoogle Scholar
  58. 58.
    Traverse-Glehen A, Verney A, Baseggio L, et al. Analysis of BCL-6, CD95, PIM1, RHO/TTF and PAX5 mutations in splenic and nodal marginal zone B-cell lymphomas suggests a particular B-cell origin. Leukemia. 2007;21(8):1821–4. 2404706 [pii].PubMedGoogle Scholar
  59. 59.
    Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415–21.  https://doi.org/10.1038/nature12477.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Wagener R, Alexandrov LB, Montesinos-Rongen M, et al. Analysis of mutational signatures in exomes from B-cell lymphoma cell lines suggest APOBEC3 family members to be involved in the pathogenesis of primary effusion lymphoma. Leukemia. 2015;29(7):1612–5.  https://doi.org/10.1038/leu.2015.22.PubMedGoogle Scholar
  61. 61.
    Willis TG, Dyer MJ. The role of immunoglobulin translocations in the pathogenesis of B-cell malignancies. Blood. 2000;96(3):808–22.PubMedGoogle Scholar
  62. 62.
    Gascoyne RD, Lamant L, Martin-Subero JI, et al. ALK-positive diffuse large B-cell lymphoma is associated with Clathrin-ALK rearrangements: report of 6 cases. Blood. 2003;102(7):2568–73.  https://doi.org/10.1182/blood-2003-03-0786.PubMedGoogle Scholar
  63. 63.
    Gesk S, Gascoyne RD, Schnitzer B, et al. ALK-positive diffuse large B-cell lymphoma with ALK-Clathrin fusion belongs to the spectrum of pediatric lymphomas. Leukemia. 2005;19(10):1839–40. 2403921 [pii].PubMedGoogle Scholar
  64. 64.
    Richter J, Schlesner M, Hoffmann S, et al. Recurrent mutation of the ID3 gene in Burkitt lymphoma identified by integrated genome, exome and transcriptome sequencing. Nat Genet. 2012;44(12):1316–20.  https://doi.org/10.1038/ng.2469.PubMedGoogle Scholar
  65. 65.
    Schmidt J, Ramis-Zaldivar JE, Nadeu F, et al. Mutations of MAP2K1 are frequent in pediatric-type follicular lymphoma and result in ERK pathway activation. Blood. 2017;130(3):323–7.  https://doi.org/10.1182/blood-2017-03-776278.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Morin RD, Mendez-Lago M, Mungall AJ, et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature. 2011;476(7360):298–303.  https://doi.org/10.1038/nature10351.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Pasqualucci L, Dominguez-Sola D, Chiarenza A, et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature. 2011;471(7337):189–95.  https://doi.org/10.1038/nature09730.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Oduor CI, Kaymaz Y, Chelimo K, et al. Integrative microRNA and mRNA deep-sequencing expression profiling in endemic Burkitt lymphoma. BMC Cancer. 2017;17(1):761-017-3711-9.  https://doi.org/10.1186/s12885-017-3711-9.Google Scholar
  69. 69.
    Pasqualucci L, Neumeister P, Goossens T, et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature. 2001;412(6844):341–6.  https://doi.org/10.1038/35085588.PubMedGoogle Scholar
  70. 70.
    Yano T, van Krieken JH, Magrath IT, et al. Histogenetic correlations between subcategories of small noncleaved cell lymphomas. Blood. 1992;79(5):1282–90.PubMedGoogle Scholar
  71. 71.
    Segal GH, Edinger MG, Owen M, et al. Concomitant delineation of surface Ig, B-cell differentiation antigens, and HLADR on lymphoid proliferations using three-color immunocytometry. Cytometry. 1991;12(4):350–9.  https://doi.org/10.1002/cyto.990120410.PubMedGoogle Scholar
  72. 72.
    Gunven P, Klein G, Klein E, et al. Surface immunoglobulins on Burkitt’s lymphoma biopsy cells from 91 patients. Int J Cancer. 1980;25(6):711–9.PubMedGoogle Scholar
  73. 73.
    Nussenzweig A, Nussenzweig MC. Origin of chromosomal translocations in lymphoid cancer. Cell. 2010;141(1):27–38.  https://doi.org/10.1016/j.cell.2010.03.016.PubMedPubMedCentralGoogle Scholar
  74. 74.
    de Jong D, Voetdijk BM, Van Ommen GJ, et al. Translocation t(14;18) in B cell lymphomas as a cause for defective immunoglobulin production. J Exp Med. 1989;169(3):613–24.PubMedGoogle Scholar
  75. 75.
    Horikawa K, Martin SW, Pogue SL, et al. Enhancement and suppression of signaling by the conserved tail of IgG memory-type B cell antigen receptors. J Exp Med. 2007;204(4):759–69. jem.20061923 [pii].PubMedPubMedCentralGoogle Scholar
  76. 76.
    Martin SW, Goodnow CC. Burst-enhancing role of the IgG membrane tail as a molecular determinant of memory. Nat Immunol. 2002;3(2):182–8.  https://doi.org/10.1038/ni752.PubMedGoogle Scholar
  77. 77.
    Dogan I, Bertocci B, Vilmont V, et al. Multiple layers of B cell memory with different effector functions. Nat Immunol. 2009;10(12):1292–9.  https://doi.org/10.1038/ni.1814.PubMedGoogle Scholar
  78. 78.
    Staudt LM. A closer look at follicular lymphoma. N Engl J Med. 2007;356(7):741–2. 356/7/741 [pii].PubMedGoogle Scholar
  79. 79.
    Vaandrager JW, Schuuring E, Kluin-Nelemans HC, et al. DNA fiber fluorescence in situ hybridization analysis of immunoglobulin class switching in B-cell neoplasia: aberrant CH gene rearrangements in follicle center-cell lymphoma. Blood. 1998;92(8):2871–8.PubMedGoogle Scholar
  80. 80.
    Lenz G, Nagel I, Siebert R, et al. Aberrant immunoglobulin class switch recombination and switch translocations in activated B cell-like diffuse large B cell lymphoma. J Exp Med. 2007;204(3):633–43. jem.20062041 [pii].PubMedPubMedCentralGoogle Scholar
  81. 81.
    Davis RE, Ngo VN, Lenz G, et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature. 2010;463(7277):88–92.  https://doi.org/10.1038/nature08638.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Chaby R, Szabo L. 3-Deoxy-2-octulosonic acid 5-phosphate: a component of the endotoxin of Bordetella pertussis. Eur J Biochem. 1975;59(1):277–80.PubMedGoogle Scholar
  83. 83.
    Ruminy P, Etancelin P, Couronne L, et al. The isotype of the BCR as a surrogate for the GCB and ABC molecular subtypes in diffuse large B-cell lymphoma. Leukemia. 2011;25(4):681–8.  https://doi.org/10.1038/leu.2010.302.PubMedGoogle Scholar
  84. 84.
    Walter R, Pan KT, Doebele C, et al. HSP90 promotes Burkitt lymphoma cell survival by maintaining tonic B-cell receptor signaling. Blood. 2017;129(5):598–608.  https://doi.org/10.1182/blood-2016-06-721423.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Zhu D, Ottensmeier CH, Du MQ, et al. Incidence of potential glycosylation sites in immunoglobulin variable regions distinguishes between subsets of Burkitt’s lymphoma and mucosa-associated lymphoid tissue lymphoma. Br J Haematol. 2003;120(2):217–22. 4064 [pii].PubMedGoogle Scholar
  86. 86.
    Coelho V, Krysov S, Ghaemmaghami AM, et al. Glycosylation of surface Ig creates a functional bridge between human follicular lymphoma and microenvironmental lectins. Proc Natl Acad Sci U S A. 2010;107(43):18587–92.  https://doi.org/10.1073/pnas.1009388107.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Radcliffe CM, Arnold JN, Suter DM, et al. Human follicular lymphoma cells contain oligomannose glycans in the antigen-binding site of the B-cell receptor. J Biol Chem. 2007;282(10):7405–15. M602690200 [pii].PubMedGoogle Scholar
  88. 88.
    Brauninger A, Spieker T, Mottok A, et al. Epstein-Barr virus (EBV)-positive lymphoproliferations in post-transplant patients show immunoglobulin V gene mutation patterns suggesting interference of EBV with normal B cell differentiation processes. Eur J Immunol. 2003;33(6):1593–602.  https://doi.org/10.1002/eji.200323765.PubMedGoogle Scholar
  89. 89.
    Timms JM, Bell A, Flavell JR, et al. Target cells of Epstein-Barr-virus (EBV)-positive post-transplant lymphoproliferative disease: similarities to EBV-positive Hodgkin’s lymphoma. Lancet. 2003;361(9353):217–23. S0140-6736(03)12271-4 [pii].PubMedGoogle Scholar
  90. 90.
    Capello D, Cerri M, Muti G, et al. Molecular histogenesis of posttransplantation lymphoproliferative disorders. Blood. 2003;102(10):3775–85.  https://doi.org/10.1182/blood-2003-05-1683.PubMedGoogle Scholar
  91. 91.
    Ritz O, Leithauser F, Hasel C, et al. Downregulation of internal enhancer activity contributes to abnormally low immunoglobulin expression in the MedB-1 mediastinal B-cell lymphoma cell line. J Pathol. 2005;205(3):336–48.  https://doi.org/10.1002/path.1688.PubMedGoogle Scholar
  92. 92.
    Pileri SA, Gaidano G, Zinzani PL, et al. Primary mediastinal B-cell lymphoma: high frequency of BCL-6 mutations and consistent expression of the transcription factors OCT-2, BOB.1, and PU.1 in the absence of immunoglobulins. Am J Pathol. 2003;162(1):243–53. S0002-9440(10)63815-1 [pii].PubMedPubMedCentralGoogle Scholar
  93. 93.
    Leithauser F, Bauerle M, Huynh MQ, et al. Isotype-switched immunoglobulin genes with a high load of somatic hypermutation and lack of ongoing mutational activity are prevalent in mediastinal B-cell lymphoma. Blood. 2001;98(9):2762–70.PubMedGoogle Scholar
  94. 94.
    Carbone A, Gloghini A. KSHV/HHV8-associated lymphomas. Br J Haematol. 2008;140(1):13–24. BJH6879 [pii].PubMedGoogle Scholar
  95. 95.
    Burkitt DP. Classics in oncology. A sarcoma involving the jaws in African children. CA Cancer J Clin. 1972;22(6):345–55.PubMedGoogle Scholar
  96. 96.
    Zech L, Haglund U, Nilsson K, et al. Characteristic chromosomal abnormalities in biopsies and lymphoid-cell lines from patients with Burkitt and non-Burkitt lymphomas. Int J Cancer. 1976;17(1):47–56.PubMedGoogle Scholar
  97. 97.
    Gabarre J, Raphael M, Lepage E, et al. Human immunodeficiency virus-related lymphoma: relation between clinical features and histologic subtypes. Am J Med. 2001;111(9):704–11. S0002934301010208 [pii].PubMedGoogle Scholar
  98. 98.
    Young LS, Dawson CW, Eliopoulos AG. The expression and function of Epstein-Barr virus encoded latent genes. Mol Pathol. 2000;53(5):238–47.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Szeles A, Falk KI, Imreh S, et al. Visualization of alternative Epstein-Barr virus expression programs by fluorescent in situ hybridization at the cell level. J Virol. 1999;73(6):5064–9.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Crawford DH. Biology and disease associations of Epstein-Barr virus. Philos Trans R Soc Lond Ser B Biol Sci. 2001;356(1408):461–73.  https://doi.org/10.1098/rstb.2000.0783.Google Scholar
  101. 101.
    Kilger E, Kieser A, Baumann M, et al. Epstein-Barr virus-mediated B-cell proliferation is dependent upon latent membrane protein 1, which simulates an activated CD40 receptor. EMBO J. 1998;17(6):1700–9.  https://doi.org/10.1093/emboj/17.6.1700.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Narkhede M, Arora S, Ujjani C. Primary effusion lymphoma: current perspectives. Onco Targets Ther. 2018;11:3747–54.  https://doi.org/10.2147/OTT.S167392.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Machida K, Cheng KT, Sung VM, et al. Hepatitis C virus induces a mutator phenotype: enhanced mutations of immunoglobulin and protooncogenes. Proc Natl Acad Sci U S A. 2004;101(12):4262–7.  https://doi.org/10.1073/pnas.0303971101.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Lacroix A, Collot-Teixeira S, Mardivirin L, et al. Involvement of human herpesvirus-6 variant B in classic Hodgkin’s lymphoma via DR7 oncoprotein. Clin Cancer Res. 2010;16(19):4711–21.  https://doi.org/10.1158/1078-0432.CCR-10-0470.PubMedGoogle Scholar
  105. 105.
    Cavalli F, Isaacson PG, Gascoyne RD, et al. MALT lymphomas. Hematology Am Soc Hematol Educ Program. 2001:1:241–58.Google Scholar
  106. 106.
    Bayerdorffer E, Neubauer A, Rudolph B, et al. Regression of primary gastric lymphoma of mucosa-associated lymphoid tissue type after cure of Helicobacter pylori infection. MALT Lymphoma Study Group. Lancet. 1995;345(8965):1591–4. S0140-6736(95)90113-2 [pii].PubMedGoogle Scholar
  107. 107.
    Wotherspoon AC, Doglioni C, Diss TC, et al. Regression of primary low-grade B-cell gastric lymphoma of mucosa-associated lymphoid tissue type after eradication of Helicobacter pylori. Lancet. 1993;342(8871):575–7. 0140-6736(93)91409-F [pii].PubMedGoogle Scholar
  108. 108.
    Morgner A, Miehlke S, Fischbach W, et al. Complete remission of primary high-grade B-cell gastric lymphoma after cure of Helicobacter pylori infection. J Clin Oncol. 2001;19(7):2041–8.  https://doi.org/10.1200/JCO.2001.19.7.2041.PubMedGoogle Scholar
  109. 109.
    Hermine O, Lefrere F, Bronowicki JP, et al. Regression of splenic lymphoma with villous lymphocytes after treatment of hepatitis C virus infection. N Engl J Med. 2002;347(2):89–94.  https://doi.org/10.1056/NEJMoa013376.PubMedGoogle Scholar
  110. 110.
    Umetsu DT, Esserman L, Donlon TA, et al. Induction of proliferation of human follicular (B type) lymphoma cells by cognate interaction with CD4+ T cell clones. J Immunol. 1990;144(7):2550–7.PubMedGoogle Scholar
  111. 111.
    Johnson PW, Watt SM, Betts DR, et al. Isolated follicular lymphoma cells are resistant to apoptosis and can be grown in vitro in the CD40/stromal cell system. Blood. 1993;82(6):1848–57.PubMedGoogle Scholar
  112. 112.
    Relander T, Johnson NA, Farinha P, et al. Prognostic factors in follicular lymphoma. J Clin Oncol. 2010;28(17):2902–13.  https://doi.org/10.1200/JCO.2009.26.1693.PubMedGoogle Scholar
  113. 113.
    Dave SS, Wright G, Tan B, et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med. 2004;351(21):2159–69. 351/21/2159 [pii].PubMedGoogle Scholar
  114. 114.
    Woo SR, Corrales L, Gajewski TF. Innate immune recognition of cancer. Annu Rev Immunol. 2015;33:445–74.  https://doi.org/10.1146/annurev-immunol-032414-112043.PubMedGoogle Scholar
  115. 115.
    Chistiakov DA, Myasoedova VA, Revin VV, et al. The impact of interferon-regulatory factors to macrophage differentiation and polarization into M1 and M2. Immunobiology. 2018;223(1):101–11. S0171-2985(17)30140-7 [pii].PubMedGoogle Scholar
  116. 116.
    Horlad H, Ma C, Yano H, et al. An IL-27/Stat3 axis induces expression of programmed cell death 1 ligands (PD-L1/2) on infiltrating macrophages in lymphoma. Cancer Sci. 2016;107(11):1696–704.  https://doi.org/10.1111/cas.13065.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381–95.  https://doi.org/10.1038/cr.2011.22.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Kouzarides T. Chromatin modifications and their function. Cell. 2007;128(4):693–705. S0092-8674(07)00184-5 [pii].PubMedGoogle Scholar
  119. 119.
    Su IH, Basavaraj A, Krutchinsky AN, et al. Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement. Nat Immunol. 2003;4(2):124–31.  https://doi.org/10.1038/ni876.PubMedGoogle Scholar
  120. 120.
    Velichutina I, Shaknovich R, Geng H, et al. EZH2-mediated epigenetic silencing in germinal center B cells contributes to proliferation and lymphomagenesis. Blood. 2010;116(24):5247–55.  https://doi.org/10.1182/blood-2010-04-280149.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Raaphorst FM, van Kemenade FJ, Fieret E, et al. Cutting edge: polycomb gene expression patterns reflect distinct B cell differentiation stages in human germinal centers. J Immunol. 2000;164(1):1–4. ji_v164n1p1 [pii].PubMedGoogle Scholar
  122. 122.
    Morin RD, Johnson NA, Severson TM, et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet. 2010;42(2):181–5.  https://doi.org/10.1038/ng.518.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Sneeringer CJ, Scott MP, Kuntz KW, et al. Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc Natl Acad Sci U S A. 2010;107(49):20980–5.  https://doi.org/10.1073/pnas.1012525107.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Yap DB, Chu J, Berg T, et al. Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. Blood. 2011;117(8):2451–9.  https://doi.org/10.1182/blood-2010-11-321208.PubMedPubMedCentralGoogle Scholar
  125. 125.
    Mills AA. Throwing the cancer switch: reciprocal roles of polycomb and trithorax proteins. Nat Rev Cancer. 2010;10(10):669–82.  https://doi.org/10.1038/nrc2931.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Arai S, Yoshimi A, Shimabe M, et al. Evi-1 is a transcriptional target of mixed-lineage leukemia oncoproteins in hematopoietic stem cells. Blood. 2011;117(23):6304–14.  https://doi.org/10.1182/blood-2009-07-234310.PubMedGoogle Scholar
  127. 127.
    Okosun J, Bodor C, Wang J, et al. Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nat Genet. 2014;46(2):176–81.  https://doi.org/10.1038/ng.2856.PubMedGoogle Scholar
  128. 128.
    Pasqualucci L, Trifonov V, Fabbri G, et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat Genet. 2011;43(9):830–7.  https://doi.org/10.1038/ng.892.PubMedPubMedCentralGoogle Scholar
  129. 129.
    Lohr JG, Stojanov P, Lawrence MS, et al. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc Natl Acad Sci U S A. 2012;109(10):3879–84.  https://doi.org/10.1073/pnas.1121343109.PubMedPubMedCentralGoogle Scholar
  130. 130.
    Zhang J, Dominguez-Sola D, Hussein S, et al. Disruption of KMT2D perturbs germinal center B cell development and promotes lymphomagenesis. Nat Med. 2015;21(10):1190–8.  https://doi.org/10.1038/nm.3940.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Mullighan CG, Zhang J, Kasper LH, et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature. 2011;471(7337):235–9.  https://doi.org/10.1038/nature09727.PubMedPubMedCentralGoogle Scholar
  132. 132.
    Hashwah H, Schmid CA, Kasser S, et al. Inactivation of CREBBP expands the germinal center B cell compartment, down-regulates MHCII expression and promotes DLBCL growth. Proc Natl Acad Sci U S A. 2017;114(36):9701–6.  https://doi.org/10.1073/pnas.1619555114.PubMedPubMedCentralGoogle Scholar
  133. 133.
    Cerchietti LC, Hatzi K, Caldas-Lopes E, et al. BCL6 repression of EP300 in human diffuse large B cell lymphoma cells provides a basis for rational combinatorial therapy. J Clin Invest. 2010;120(12):4569–82.  https://doi.org/10.1172/JCI42869.PubMedPubMedCentralGoogle Scholar
  134. 134.
    Oakes CC, Seifert M, Assenov Y, et al. DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia. Nat Genet. 2016;48(3):253–64.  https://doi.org/10.1038/ng.3488.PubMedPubMedCentralGoogle Scholar
  135. 135.
    Kretzmer H, Bernhart SH, Wang W, et al. DNA methylome analysis in Burkitt and follicular lymphomas identifies differentially methylated regions linked to somatic mutation and transcriptional control. Nat Genet. 2015;47(11):1316–25.  https://doi.org/10.1038/ng.3413.PubMedPubMedCentralGoogle Scholar
  136. 136.
    O’Riain C, O’Shea DM, Yang Y, et al. Array-based DNA methylation profiling in follicular lymphoma. Leukemia. 2009;23(10):1858–66.  https://doi.org/10.1038/leu.2009.114.PubMedPubMedCentralGoogle Scholar
  137. 137.
    Bennett LB, Schnabel JL, Kelchen JM, et al. DNA hypermethylation accompanied by transcriptional repression in follicular lymphoma. Genes Chromosomes Cancer. 2009;48(9):828–41.  https://doi.org/10.1002/gcc.20687.PubMedPubMedCentralGoogle Scholar
  138. 138.
    Martin-Subero JI, Kreuz M, Bibikova M, et al. New insights into the biology and origin of mature aggressive B-cell lymphomas by combined epigenomic, genomic, and transcriptional profiling. Blood. 2009;113(11):2488–97.  https://doi.org/10.1182/blood-2008-04-152900.PubMedGoogle Scholar
  139. 139.
    Leshchenko VV, Kuo PY, Shaknovich R, et al. Genomewide DNA methylation analysis reveals novel targets for drug development in mantle cell lymphoma. Blood. 2010;116(7):1025–34.  https://doi.org/10.1182/blood-2009-12-257485.PubMedPubMedCentralGoogle Scholar
  140. 140.
    Berdasco M, Esteller M. Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell. 2010;19(5):698–711.  https://doi.org/10.1016/j.devcel.2010.10.005.PubMedGoogle Scholar
  141. 141.
    Shaknovich R, Cerchietti L, Tsikitas L, et al. DNA methyltransferase 1 and DNA methylation patterning contribute to germinal center B-cell differentiation. Blood. 2011;118(13):3559–69.  https://doi.org/10.1182/blood-2011-06-357996.PubMedPubMedCentralGoogle Scholar
  142. 142.
    Robaina MC, Mazzoccoli L, Arruda VO, et al. Deregulation of DNMT1, DNMT3B and miR-29s in Burkitt lymphoma suggests novel contribution for disease pathogenesis. Exp Mol Pathol. 2015;98(2):200–7.  https://doi.org/10.1016/j.yexmp.2015.03.006.PubMedGoogle Scholar
  143. 143.
    Johansson B, Mertens F, Mitelman F. Cytogenetic evolution patterns in non-Hodgkin’s lymphoma. Blood. 1995;86(10):3905–14. PMID: 7579360.Google Scholar
  144. 144.
    Kaymaz Y, Oduor CI, Yu H, et al. Comprehensive transcriptome and mutational profiling of endemic Burkitt lymphoma reveals EBV type-specific differences. Mol Cancer Res. 2017;15(5):563–76.  https://doi.org/10.1158/1541-7786.MCR-16-0305.PubMedPubMedCentralGoogle Scholar
  145. 145.
    Love C, Sun Z, Jima D, et al. The genetic landscape of mutations in Burkitt lymphoma. Nat Genet. 2012;44(12):1321–5.  https://doi.org/10.1038/ng.2468.PubMedPubMedCentralGoogle Scholar
  146. 146.
    Salaverria I, Martin-Guerrero I, Wagener R, Kreuz M, Kohler CW, Richter J, Pienkowska-Grela B, Adam P, Burkhardt B, Claviez A, Damm-Welk C, Drexler HG, Hummel M, Jaffe ES, Küppers R, Lefebvre C, Lisfeld J, Löffler M, Macleod RA, Nagel I, Oschlies I, Rosolowski M, Russell RB, Rymkiewicz G, Schindler D, Schlesner M, Scholtysik R, Schwaenen C, Spang R, Szczepanowski M, Trümper L, Vater I, Wessendorf S, Klapper W, Siebert R, Molecular Mechanisms in Malignant Lymphoma Network Project, Berlin-Frankfurt-Münster Non-Hodgkin Lymphoma Group. A recurrent 11q aberration pattern characterizes a subset of MYC-negative high-grade B-cell lymphomas resembling Burkitt lymphoma. Blood. 2014;123(8):1187–98. https://doi.org/10.1182/blood-2013-06-507996. Epub 2014 Jan 7. PMID:24398325.PubMedPubMedCentralGoogle Scholar
  147. 147.
    Klapper W, Kreuz M, Kohler CW, et al. Patient age at diagnosis is associated with the molecular characteristics of diffuse large B-cell lymphoma. Blood. 2012;119(8):1882–7.  https://doi.org/10.1182/blood-2011-10-388470.PubMedGoogle Scholar
  148. 148.
    Swerdlow S, Campo E, Harris N, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon: International Agency for Research on Cancer; 2017.Google Scholar
  149. 149.
    Wessendorf S, Barth TF, Viardot A, et al. Further delineation of chromosomal consensus regions in primary mediastinal B-cell lymphomas: an analysis of 37 tumor samples using high-resolution genomic profiling (array-CGH). Leukemia. 2007;21(12):2463–9. 2404919 [pii].PubMedGoogle Scholar
  150. 150.
    Salaverria I, Martin-Guerrero I, Burkhardt B, et al. High resolution copy number analysis of IRF4 translocation-positive diffuse large B-cell and follicular lymphomas. Genes Chromosomes Cancer. 2013;52(2):150–5.  https://doi.org/10.1002/gcc.22014.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rabea Wagener
    • 1
  • Cristina López
    • 1
  • Reiner Siebert
    • 1
    Email author
  1. 1.Institute of Human Genetics, Ulm University and Ulm University Medical CenterUlmGermany

Personalised recommendations