Advertisement

Role of Tissue Biopsy in Drug Development for Nonalcoholic Fatty Liver Disease and Other Metabolic Disorders

  • Andrew J. KrentzEmail author
  • Pierre Bedossa
Chapter

Abstract

Biopsy studies of metabolically-active tissues including liver, skeletal muscle and adipose tissue have helped delineate important aspects of the etiopathogenesis of diabetes and related cardiometabolic disorders. Tissue biopsy may also play a role in the development of new drugs. The most prominent example is the central place of liver histology in the assessment of efficacy and safety of new pharmacotherapies for nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH). Several drugs are currently in phase 3 trials for this indication that involve paired liver biopsies.

Keywords

Liver biopsy Histology Gene expression Enzyme activity Nonalcoholic fatty liver disease Liver fibrosis Diabetes mellitus Obesity Cardiometabolic disease Skeletal muscle Adipose tissue 

References

  1. 1.
    Brunt EM, Wong VW, Nobili V, et al. Nonalcoholic fatty liver disease. Nat Rev Dis Primers. 2015;1:15080.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Stefan N, Haring HU, Cusi K. Non-alcoholic fatty liver disease: causes, diagnosis, cardiometabolic consequences, and treatment strategies. Lancet Diabetes Endocrinol. 2018.  https://doi.org/10.1016/S2213-8587(18)30154-2.
  3. 3.
    Bellentani S. The epidemiology of non-alcoholic fatty liver disease. Liver Int. 2017;37(Suppl 1):81–4.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Younossi Z, Anstee QM, Marietti M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2018;15(1):11–20.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Williams CD, Stengel J, Asike MI, et al. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology. 2011;140(1):124–31.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Stine JG, Wentworth BJ, Zimmet A, et al. Systematic review with meta-analysis: risk of hepatocellular carcinoma in non-alcoholic steatohepatitis without cirrhosis compared to other liver diseases. Aliment Pharmacol Ther. 2018;48(7):696–703.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Fassio E, Alvarez E, Dominguez N, Landeira G, Longo C. Natural history of nonalcoholic steatohepatitis: a longitudinal study of repeat liver biopsies. Hepatology. 2004;40(4):820–6.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Vernon G, Baranova A, Younossi ZM. Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther. 2011;34(3):274–85.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Singh S, Allen AM, Wang Z, et al. Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: a systematic review and meta-analysis of paired-biopsy studies. Clin Gastroenterol Hepatol. 2015;13(4):643–54 e1–9; quiz e39–40.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Wong VW, Wong GL, Choi PC, et al. Disease progression of non-alcoholic fatty liver disease: a prospective study with paired liver biopsies at 3 years. Gut. 2010;59(7):969–74.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Koehler E, Watt K, Charlton M. Fatty liver and liver transplantation. Clin Liver Dis. 2009;13(4):621–30.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Parikh ND, Marrero WJ, Wang J, et al. Projected increase in obesity and non-alcoholic-steatohepatitis-related liver transplantation waitlist additions in the United States. Hepatology. 2017.  https://doi.org/10.1002/hep.29473.
  13. 13.
    Yki-Jarvinen H. Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol. 2014;2:901–10.PubMedCrossRefGoogle Scholar
  14. 14.
    Roden M. Mechanisms of disease: hepatic steatosis in type 2 diabetes--pathogenesis and clinical relevance. Nat Clin Pract Endocrinol Metab. 2006;2(6):335–48.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Katsiki N, Mikhailidis DP, Mantzoros CS. Non-alcoholic fatty liver disease and dyslipidemia: an update. Metabolism. 2016;65(8):1109–23.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Byrne CD, Targher G. NAFLD: a multisystem disease. J Hepatol. 2015;62(1 Suppl):S47–64.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Neuschwander-Tetri BA, Clark JM, Bass NM, et al. Clinical, laboratory and histological associations in adults with nonalcoholic fatty liver disease. Hepatology. 2010;52(3):913–24.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Leite NC, Salles GF, Araujo AL, Villela-Nogueira CA, Cardoso CR. Prevalence and associated factors of non-alcoholic fatty liver disease in patients with type-2 diabetes mellitus. Liver Int. 2009;29(1):113–9.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Subichin M, Clanton J, Makuszewski M, et al. Liver disease in the morbidly obese: a review of 1000 consecutive patients undergoing weight loss surgery. Surg Obes Relat Dis. 2015;11(1):137–41.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Radaelli MG, Martucci F, Perra S, et al. NAFLD/NASH in patients with type 2 diabetes and related treatment options. J Endocrinol Investig. 2018;41(5):509–21.CrossRefGoogle Scholar
  21. 21.
    Mantovani A, Zaza G, Byrne CD, et al. Nonalcoholic fatty liver disease increases risk of incident chronic kidney disease: a systematic review and meta-analysis. Metabolism. 2018;79:64–76.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Dunn W, Xu R, Wingard DL, et al. Suspected nonalcoholic fatty liver disease and mortality risk in a population-based cohort study. Am J Gastroenterol. 2008;103(9):2263–71.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Targher G, Byrne CD, Lonardo A, Zoppini G, Barbui C. Non-alcoholic fatty liver disease and risk of incident cardiovascular disease: a meta-analysis. J Hepatol. 2016;65(3):589–600.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Seko Y, Yamaguchi K, Itoh Y. The genetic backgrounds in nonalcoholic fatty liver disease. Clin J Gastroenterol. 2018;11(2):97–102.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Ludwig J, Viggiano TR, McGill DB, Oh BJ. Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin Proc. 1980;55(7):434–8.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Argo CK, Caldwell SH. Epidemiology and natural history of non-alcoholic steatohepatitis. Clin Liver Dis. 2009;13(4):511–31.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Caldwell S, Argo C. The natural history of non-alcoholic fatty liver disease. Dig Dis. 2010;28(1):162–8.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Angulo P, Kleiner DE, Dam-Larsen S, et al. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology. 2015;149(2):389–97 e10.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Hubscher SG. Histological assessment of non-alcoholic fatty liver disease. Histopathology. 2006;49(5):450–65.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Kleiner DE. Histopathology, grading and staging of nonalcoholic fatty liver disease. Minerva Gastroenterol Dietol. 2018;64(1):28–38.PubMedGoogle Scholar
  31. 31.
    Bedossa P. Diagnosis of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis: why liver biopsy is essential. Liver Int. 2018;38(Suppl 1):64–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Sanyal AJ, Chalasani N. Trials and tribulations in drug development for nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol. 2014;12(12):2104–5.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018;67(1):328–57.CrossRefGoogle Scholar
  34. 34.
    Konerman MA, Jones JC, Harrison SA. Pharmacotherapy for NASH: current and emerging. J Hepatol. 2018;68(2):362–75.PubMedCrossRefGoogle Scholar
  35. 35.
    Siddiqui MS, Harrison SA, Abdelmalek MF, et al. Case definitions for inclusion and analysis of endpoints in clinical trials for nonalcoholic steatohepatitis through the lens of regulatory science. Hepatology. 2018;67(5):2001–12.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol. 1999;94(9):2467–74.PubMedCrossRefGoogle Scholar
  37. 37.
    Bedossa P, Poitou C, Veyrie N, et al. Histopathological algorithm and scoring system for evaluation of liver lesions in morbidly obese patients. Hepatology. 2012;56(5):1751–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Younossi ZM, Stepanova M, Rafiq N, et al. Pathologic criteria for nonalcoholic steatohepatitis: interprotocol agreement and ability to predict liver-related mortality. Hepatology. 2011;53(6):1874–82.CrossRefGoogle Scholar
  39. 39.
    Neuschwander-Tetri BA, Brunt EM, Wehmeier KR, Oliver D, Bacon BR. Improved nonalcoholic steatohepatitis after 48 weeks of treatment with the PPAR-gamma ligand rosiglitazone. Hepatology. 2003;38(4):1008–17.PubMedCrossRefGoogle Scholar
  40. 40.
    Lindor KD, Kowdley KV, Heathcote EJ, et al. Ursodeoxycholic acid for treatment of nonalcoholic steatohepatitis: results of a randomized trial. Hepatology. 2004;39(3):770–8.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Ratziu V, Giral P, Jacqueminet S, et al. Rosiglitazone for nonalcoholic steatohepatitis: one-year results of the randomized placebo-controlled Fatty Liver Improvement with Rosiglitazone Therapy (FLIRT) Trial. Gastroenterology. 2008;135(1):100–10.CrossRefGoogle Scholar
  42. 42.
    Lutchman G, Modi A, Kleiner DE, et al. The effects of discontinuing pioglitazone in patients with nonalcoholic steatohepatitis. Hepatology. 2007;46(2):424–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Dixon JB, Anderson M, Cameron-Smith D, O’Brien PE. Sustained weight loss in obese subjects has benefits that are independent of attained weight. Obes Res. 2004;12(11):1895–902.PubMedCrossRefGoogle Scholar
  44. 44.
    Pillai AA, Rinella ME. Non-alcoholic fatty liver disease: is bariatric surgery the answer? Clin Liver Dis. 2009;13(4):689–710.PubMedCrossRefGoogle Scholar
  45. 45.
    Vilar-Gomez E, Chalasani N. Non-invasive assessment of non-alcoholic fatty liver disease: clinical prediction rules and blood-based biomarkers. J Hepatol. 2018;68(2):305–15.PubMedCrossRefGoogle Scholar
  46. 46.
    Poynard T, Munteanu M, Charlotte F, et al. Diagnostic performance of a new noninvasive test for nonalcoholic steatohepatitis using a simplified histological reference. Eur J Gastroenterol Hepatol. 2018;30(5):569–77.PubMedGoogle Scholar
  47. 47.
    Sanyal AJ, Friedman SL, McCullough AJ, et al. Challenges and opportunities in drug and biomarker development for nonalcoholic steatohepatitis: findings and recommendations from an American Association for the Study of Liver Diseases-U.S. Food and Drug Administration Joint Workshop. Hepatology. 2015;61(4):1392–405.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Byrne CD, Targher G. Time to replace assessment of liver histology with MR-based imaging tests to assess efficacy of interventions for nonalcoholic fatty liver disease. Gastroenterology. 2016;150(1):7–10.PubMedCrossRefGoogle Scholar
  49. 49.
    Li Q, Dhyani M, Grajo JR, Sirlin C, Samir AE. Current status of imaging in nonalcoholic fatty liver disease. World J Hepatol. 2018;10(8):530–42.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Brunt EM, Tiniakos DG. Histopathology of nonalcoholic fatty liver disease. World J Gastroenterol. 2010;16(42):5286–96.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    European Association for the Study of the Liver, European Association for the Study of Diabetes, European Association for the Study of Obesity. EASL EASD EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease. J Hepatol. 2016;64(6):1388–402.CrossRefGoogle Scholar
  52. 52.
    Byrne CD, Targher G. EASL-EASD-EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease: is universal screening appropriate? Diabetologia. 2016;59(6):1141–4.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    National Institute for Health and Clinical Excellence. Non-alcoholic fatty liver disease (NAFLD): assessment and management. NICE guideline [NG49]. 2016.Google Scholar
  54. 54.
    Glen J, Floros L, Day C, Pryke R, Guideline Development Group. Non-alcoholic fatty liver disease (NAFLD): summary of NICE guidance. BMJ. 2016;354:i4428.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Sumida Y, Yoneda M. Current and future pharmacological therapies for NAFLD/NASH. J Gastroenterol. 2018;53(3):362–76.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Menghini G. One-second needle biopsy of the liver. Gastroenterology. 1958;35(2):190–9.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Ghent CN. Percutaneous liver biopsy: reflections and refinements. Can J Gastroenterol. 2006;20(2):75–9.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Spengler EK, Loomba R. Recommendations for diagnosis, referral for liver biopsy, and treatment of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Mayo Clin Proc. 2015;90(9):1233–46.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Gunn NT, Shiffman ML. The use of liver biopsy in nonalcoholic fatty liver disease: when to biopsy and in whom. Clin Liver Dis. 2018;22(1):109–19.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Hannah WN Jr, Torres DM, Harrison SA. Nonalcoholic Steatohepatitis and endpoints in clinical trials. Gastroenterol Hepatol (N Y). 2016;12(12):756–63.Google Scholar
  61. 61.
    Sun TL, Liu Y, Sung MC, et al. Ex vivo imaging and quantification of liver fibrosis using second-harmonic generation microscopy. J Biomed Opt. 2010;15(3):036002.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Scupakova K, Soons Z, Ertaylan G, et al. Spatial systems lipidomics reveals nonalcoholic fatty liver disease heterogeneity. Anal Chem. 2018;90(8):5130–8.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Pinelo E, Presa J. Outpatient percutaneous liver biopsy: still a good option. Eur J Intern Med. 2009;20(5):487–9.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Rockey DC, Caldwell SH, Goodman ZD, et al. Liver biopsy. Hepatology. 2009;49(3):1017–44.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Cadranel JF, Rufat P, Degos F. Practices of liver biopsy in France: results of a prospective nationwide survey. For the Group of Epidemiology of the French Association for the Study of the Liver (AFEF). Hepatology. 2000;32(3):477–81.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Barbois S, Arvieux C, Leroy V, et al. Benefit-risk of intraoperative liver biopsy during bariatric surgery: review and perspectives. Surg Obes Relat Dis. 2017;13(10):1780–6.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Vilar-Gomez E, Martinez-Perez Y, Calzadilla-Bertot L, et al. Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. Gastroenterology. 2015;149(2):367–78 e5; quiz e14–5.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Patel NS, Doycheva I, Peterson MR, et al. Effect of weight loss on magnetic resonance imaging estimation of liver fat and volume in patients with nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol. 2015;13(3):561–568 e1.PubMedCrossRefGoogle Scholar
  69. 69.
    Boyle M, Masson S, Anstee QM. The bidirectional impacts of alcohol consumption and the metabolic syndrome: cofactors for progressive fatty liver disease. J Hepatol. 2018;68(2):251–67.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Ajmera V, Belt P, Wilson LA, et al. Among patients with nonalcoholic fatty liver disease, modest alcohol use is associated with less improvement in histologic steatosis and steatohepatitis. Clin Gastroenterol Hepatol. 2018;16(9):1511–1520 e5.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Lee Y, Doumouras AG, Yu J, et al. Complete resolution of nonalcoholic fatty liver disease after bariatric surgery: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2018.  https://doi.org/10.1016/j.cgh.2018.10.017.
  72. 72.
    Kleiner DE, Brunt EM, Van Natta M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41(6):1313–21.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Bedossa P, Consortium FP. Utility and appropriateness of the fatty liver inhibition of progression (FLIP) algorithm and steatosis, activity, and fibrosis (SAF) score in the evaluation of biopsies of nonalcoholic fatty liver disease. Hepatology. 2014;60(2):565–75.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Banini BA, Sanyal AJ. Current and future pharmacologic treatment of nonalcoholic steatohepatitis. Curr Opin Gastroenterol. 2017;33(3):134–41.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Alkhouri N, Poordad F, Lawitz E. Management of nonalcoholic fatty liver disease: lessons learned from type 2 diabetes. Hepatol Commun. 2018;2(7):778–85.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Alkhouri N, Scott A. An update on the pharmacological treatment of nonalcoholic fatty liver disease: beyond lifestyle modications. Clin Liver Dis. 2018;11:82–6.CrossRefGoogle Scholar
  77. 77.
    Oseini AM, Cole BK, Issa D, Feaver RE, Sanyal AJ. Translating scientific discovery: the need for preclinical models of nonalcoholic steatohepatitis. Hepatol Int. 2018;12(1):6–16.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Jahn D, Kircher S, Hermanns HM, Geier A. Animal models of NAFLD from a hepatologist’s point of view. Biochim Biophys Acta Mol basis Dis. 2018.  https://doi.org/10.1016/j.bbadis.2018.06.023.
  79. 79.
    Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018;24(7):908–22.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Issa D, Patel V, Sanyal AJ. Future therapy for non-alcoholic fatty liver disease. Liver Int. 2018;38(Suppl 1):56–63.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Neuschwander-Tetri BA, Loomba R, Sanyal AJ, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet. 2015;385(9972):956–65.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Ratziu V, Harrison SA, Francque S, et al. Elafibranor, an agonist of the peroxisome proliferator-activated receptor-alpha and -delta, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology. 2016;150(5):1147–1159 e5.PubMedCrossRefGoogle Scholar
  83. 83.
    Newman JD, Vani AK, Aleman JO, et al. The changing landscape of diabetes therapy for cardiovascular risk reduction: JACC State-of-the-Art Review. J Am Coll Cardiol. 2018;72(15):1856–69.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Armstrong MJ, Gaunt P, Aithal GP, et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet. 2016;387(10019):679–90.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Honda Y, Imajo K, Kato T, et al. The selective SGLT2 inhibitor ipragliflozin has a therapeutic effect on nonalcoholic steatohepatitis in mice. PLoS One. 2016;11(1):e0146337.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Kuchay MS, Krishan S, Mishra SK, et al. Effect of empagliflozin on liver fat in patients with type 2 diabetes and nonalcoholic fatty liver disease: a randomized controlled trial (E-LIFT trial). Diabetes Care. 2018;41(8):1801–8.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Abdul-Ghani MA, DeFronzo RA. Pathogenesis of insulin resistance in skeletal muscle. J Biomed Biotechnol. 2010;2010:476279.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Bjornholm M, Zierath JR. Insulin signal transduction in human skeletal muscle: identifying the defects in Type II diabetes. Biochem Soc Trans. 2005;33(Pt 2):354–7.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Defronzo RA. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58(4):773–95.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Hojlund K, Beck-Nielsen H. Impaired glycogen synthase activity and mitochondrial dysfunction in skeletal muscle: markers or mediators of insulin resistance in type 2 diabetes? Curr Diabetes Rev. 2006;2(4):375–95.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Hojlund K, Staehr P, Hansen BF, et al. Increased phosphorylation of skeletal muscle glycogen synthase at NH2-terminal sites during physiological hyperinsulinemia in type 2 diabetes. Diabetes. 2003;52(6):1393–402.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Workeneh B, Bajaj M. The regulation of muscle protein turnover in diabetes. Int J Biochem Cell Biol. 2013;45(10):2239–44.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Bergström J. Muscle electrolytes in man, determined by neutron activation analysis on needle biopsy specimens, a study in normal subjects, kidney patients, and patients with chronic diarrhoea. Scand J Clin Lab Invest. 1962;14:1–110.CrossRefGoogle Scholar
  94. 94.
    Bergstrom J. Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scand J Clin Lab Invest. 1975;35(7):609–16.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Hojlund K, Yi Z, Hwang H, et al. Characterization of the human skeletal muscle proteome by one-dimensional gel electrophoresis and HPLC-ESI-MS/MS. Mol Cell Proteomics. 2008;7(2):257–67.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Tarnopolsky MA, Pearce E, Smith K, Lach B. Suction-modified Bergstrom muscle biopsy technique: experience with 13,500 procedures. Muscle Nerve. 2011;43(5):717–25.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Shanely RA, Zwetsloot KA, Triplett NT, et al. Human skeletal muscle biopsy procedures using the modified Bergstrom technique. J Vis Exp. 2014;10(91):51812.Google Scholar
  98. 98.
    Duan Y, Li F, Tan B, Yao K, Yin Y. Metabolic control of myofibers: promising therapeutic target for obesity and type 2 diabetes. Obes Rev. 2017;18(6):647–59.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Albers PH, Pedersen AJ, Birk JB, et al. Human muscle fiber type-specific insulin signaling: impact of obesity and type 2 diabetes. Diabetes. 2015;64(2):485–97.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Marin P, Andersson B, Krotkiewski M, Bjorntorp P. Muscle fiber composition and capillary density in women and men with NIDDM. Diabetes Care. 1994;17(5):382–6.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Gaster M, Staehr P, Beck-Nielsen H, Schroder HD, Handberg A. GLUT4 is reduced in slow muscle fibers of type 2 diabetic patients: is insulin resistance in type 2 diabetes a slow, type 1 fiber disease? Diabetes. 2001;50(6):1324–9.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Stuart CA, McCurry MP, Marino A, et al. Slow-twitch fiber proportion in skeletal muscle correlates with insulin responsiveness. J Clin Endocrinol Metab. 2013;98(5):2027–36.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Stuart CA, South MA, Lee ML, et al. Insulin responsiveness in metabolic syndrome after eight weeks of cycle training. Med Sci Sports Exerc. 2013;45(11):2021–9.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Palsgaard J, Brons C, Friedrichsen M, et al. Gene expression in skeletal muscle biopsies from people with type 2 diabetes and relatives: differential regulation of insulin signaling pathways. PLoS One. 2009;4(8):e6575.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Lambadiari V, Triantafyllou K, Dimitriadis GD. Insulin action in muscle and adipose tissue in type 2 diabetes: the significance of blood flow. World J Diabetes. 2015;6(4):626–33.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Laughlin MH. Physical activity-induced remodeling of vasculature in skeletal muscle: role in treatment of type 2 diabetes. J Appl Physiol (1985). 2016;120(1):1–16.CrossRefGoogle Scholar
  107. 107.
    Lettner A, Roden M. Ectopic fat and insulin resistance. Curr Diab Rep. 2008;8(3):185–91.PubMedCrossRefGoogle Scholar
  108. 108.
    Samuel VT, Shulman GI. Mechanisms for insulin resistance: common threads and missing links. Cell. 2012;148(5):852–71.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Srikanthan P, Hevener AL, Karlamangla AS. Sarcopenia exacerbates obesity-associated insulin resistance and dysglycemia: findings from the National Health and Nutrition Examination Survey III. PLoS One. 2010;5(5):e10805.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Varma V, Yao-Borengasser A, Rasouli N, et al. Muscle inflammatory response and insulin resistance: synergistic interaction between macrophages and fatty acids leads to impaired insulin action. Am J Physiol Endocrinol Metab. 2009;296(6):E1300–10.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Glass CK, Olefsky JM. Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab. 2012;15(5):635–45.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Nicholson T, Church C, Baker DJ, Jones SW. The role of adipokines in skeletal muscle inflammation and insulin sensitivity. J Inflamm (Lond). 2018;15:9.CrossRefGoogle Scholar
  113. 113.
    Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963;1(7285):785–9.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Kelley DE, Mokan M, Simoneau JA, Mandarino LJ. Interaction between glucose and free fatty acid metabolism in human skeletal muscle. J Clin Invest. 1993;92(1):91–8.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Hue L, Taegtmeyer H. The Randle cycle revisited: a new head for an old hat. Am J Physiol Endocrinol Metab. 2009;297(3):E578–91.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Martins AR, Nachbar RT, Gorjao R, et al. Mechanisms underlying skeletal muscle insulin resistance induced by fatty acids: importance of the mitochondrial function. Lipids Health Dis. 2012;11:30.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Phielix E, Jelenik T, Nowotny P, Szendroedi J, Roden M. Reduction of non-esterified fatty acids improves insulin sensitivity and lowers oxidative stress, but fails to restore oxidative capacity in type 2 diabetes: a randomised clinical trial. Diabetologia. 2014;57(3):572–81.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Makimura H, Stanley TL, Suresh C, et al. Metabolic effects of long-term reduction in free fatty acids with acipimox in obesity: a randomized trial. J Clin Endocrinol Metab. 2016;101(3):1123–33.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Machado MV, Ferreira DM, Castro RE, et al. Liver and muscle in morbid obesity: the interplay of fatty liver and insulin resistance. PLoS One. 2012;7(2):e31738.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Camastra S, Vitali A, Anselmino M, et al. Muscle and adipose tissue morphology, insulin sensitivity and beta-cell function in diabetic and nondiabetic obese patients: effects of bariatric surgery. Sci Rep. 2017;7(1):9007.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Pedersen BK. Muscles and their myokines. J Exp Biol. 2011;214(Pt 2):337–46.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Delezie J, Handschin C. Endocrine crosstalk between skeletal muscle and the brain. Front Neurol. 2018;9:698.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Sakuma K, Yamaguchi A. Drugs of muscle wasting and their therapeutic targets. Adv Exp Med Biol. 2018;1088:463–81.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Bouchonville MF, Villareal DT. Sarcopenic obesity: how do we treat it? Curr Opin Endocrinol Diabetes Obes. 2013;20(5):412–9.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Consitt LA, Clark BC. The vicious cycle of myostatin signaling in sarcopenic obesity: myostatin role in skeletal muscle growth, insulin signaling and implications for clinical trials. J Frailty Aging. 2018;7(1):21–7.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Cleasby ME, Jamieson PM, Atherton PJ. Insulin resistance and sarcopenia: mechanistic links between common co-morbidities. J Endocrinol. 2016;229(2):R67–81.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Allen DL, Hittel DS, McPherron AC. Expression and function of myostatin in obesity, diabetes, and exercise adaptation. Med Sci Sports Exerc. 2011;43(10):1828–35.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Morley JE. Pharmacologic options for the treatment of sarcopenia. Calcif Tissue Int. 2016;98(4):319–33.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Garito T, Roubenoff R, Hompesch M, et al. Bimagrumab improves body composition and insulin sensitivity in insulin-resistant individuals. Diabetes Obes Metab. 2018;20(1):94–102.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Nikoulina SE, Ciaraldi TP, Abrams-Carter L, et al. Regulation of glycogen synthase activity in cultured skeletal muscle cells from subjects with type II diabetes: role of chronic hyperinsulinemia and hyperglycemia. Diabetes. 1997;46(6):1017–24.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Beck-Nielsen H, Vaag A, Poulsen P, Gaster M. Metabolic and genetic influence on glucose metabolism in type 2 diabetic subjects--experiences from relatives and twin studies. Best Pract Res Clin Endocrinol Metab. 2003;17(3):445–67.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Thingholm TE, Bak S, Beck-Nielsen H, Jensen ON, Gaster M. Characterization of human myotubes from type 2 diabetic and nondiabetic subjects using complementary quantitative mass spectrometric methods. Mol Cell Proteomics. 2011;10(9):M110 006650.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Aas V, Bakke SS, Feng YZ, et al. Are cultured human myotubes far from home? Cell Tissue Res. 2013;354(3):671–82.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Costford SR, Crawford SA, Dent R, McPherson R, Harper ME. Increased susceptibility to oxidative damage in post-diabetic human myotubes. Diabetologia. 2009;52(11):2405–15.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Al-Khalili L, de Castro Barbosa T, Östling J, Massart J, Katyama M, Nyström C, Oscarsson J, Zierath JR. Profiling of human myotubes reveals an intrinsic proteomic signature associated with type 2 diabetes. Transl Proteomics. 2014;2:25–38.CrossRefGoogle Scholar
  136. 136.
    Tchernof A, Despres JP. Pathophysiology of human visceral obesity: an update. Physiol Rev. 2013;93(1):359–404.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Sattar N, Gill JM. Type 2 diabetes as a disease of ectopic fat. BMC Med. 2014;12:123.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Smith U. Abdominal obesity: a marker of ectopic fat accumulation. J Clin Invest. 2015;125(5):1790–2.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Piche ME, Poirier P, Lemieux I, Despres JP. Overview of epidemiology and contribution of obesity and body fat distribution to cardiovascular disease: an update. Prog Cardiovasc Dis. 2018;61(2):103–13.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Trujillo ME, Scherer PE. Adipose tissue-derived factors: impact on health and disease. Endocr Rev. 2006;27(7):762–78.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Coelho M, Oliveira T, Fernandes R. Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci. 2013;9(2):191–200.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    White U, Ravussin E. Dynamics of adipose tissue turnover in human metabolic health and disease. Diabetologia. 2019;62:17–23.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Appari M, Channon KM, McNeill E. Metabolic regulation of adipose tissue macrophage function in obesity and diabetes. Antioxid Redox Signal. 2018;29(3):297–312.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Labrecque J, Laforest S, Michaud A, Biertho L, Tchernof A. Impact of bariatric surgery on white adipose tissue inflammation. Can J Diabetes. 2017;41(4):407–17.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Carswell KA, Lee MJ, Fried SK. Culture of isolated human adipocytes and isolated adipose tissue. Methods Mol Biol. 2012;806:203–14.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Petrus P, Rosqvist F, Edholm D, et al. Saturated fatty acids in human visceral adipose tissue are associated with increased 11- beta-hydroxysteroid-dehydrogenase type 1 expression. Lipids Health Dis. 2015;14:42.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Verboven K, Wouters K, Gaens K, et al. Abdominal subcutaneous and visceral adipocyte size, lipolysis and inflammation relate to insulin resistance in male obese humans. Sci Rep. 2018;8(1):4677.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Zierath JR, Livingston JN, Thorne A, et al. Regional difference in insulin inhibition of non-esterified fatty acid release from human adipocytes: relation to insulin receptor phosphorylation and intracellular signalling through the insulin receptor substrate-1 pathway. Diabetologia. 1998;41(11):1343–54.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Dusserre E, Moulin P, Vidal H. Differences in mRNA expression of the proteins secreted by the adipocytes in human subcutaneous and visceral adipose tissues. Biochim Biophys Acta. 2000;1500(1):88–96.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Mutch DM, Tordjman J, Pelloux V, et al. Needle and surgical biopsy techniques differentially affect adipose tissue gene expression profiles. Am J Clin Nutr. 2009;89(1):51–7.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Murphy J, Moullec G, Santosa S. Factors associated with adipocyte size reduction after weight loss interventions for overweight and obesity: a systematic review and meta-regression. Metabolism. 2017;67:31–40.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Yki-Jarvinen H. Thiazolidinediones. N Engl J Med. 2004;351(11):1106–18.PubMedCrossRefGoogle Scholar
  153. 153.
    Fonseca V. Effect of thiazolidinediones on body weight in patients with diabetes mellitus. Am J Med. 2003;115(Suppl 8A):42S–8S.PubMedCrossRefGoogle Scholar
  154. 154.
    de Souza CJ, Eckhardt M, Gagen K, et al. Effects of pioglitazone on adipose tissue remodeling within the setting of obesity and insulin resistance. Diabetes. 2001;50(8):1863–71.PubMedCrossRefGoogle Scholar
  155. 155.
    Hammarstedt A, Andersson CX, Rotter Sopasakis V, Smith U. The effect of PPARgamma ligands on the adipose tissue in insulin resistance. Prostaglandins Leukot Essent Fatty Acids. 2005;73(1):65–75.PubMedCrossRefGoogle Scholar
  156. 156.
    McLaughlin TM, Liu T, Yee G, et al. Pioglitazone increases the proportion of small cells in human abdominal subcutaneous adipose tissue. Obesity (Silver Spring). 2010;18(5):926–31.CrossRefGoogle Scholar
  157. 157.
    Trujillo ME, Scherer PE. Adiponectin--journey from an adipocyte secretory protein to biomarker of the metabolic syndrome. J Intern Med. 2005;257(2):167–75.PubMedCrossRefGoogle Scholar
  158. 158.
    Rasouli N, Yao-Borengasser A, Miles LM, Elbein SC, Kern PA. Increased plasma adiponectin in response to pioglitazone does not result from increased gene expression. Am J Physiol Endocrinol Metab. 2006;290(1):E42–6.PubMedCrossRefGoogle Scholar
  159. 159.
    Hollis G, Huber R. 11beta-Hydroxysteroid dehydrogenase type 1 inhibition in type 2 diabetes mellitus. Diabetes Obes Metab. 2011;13(1):1–6.PubMedCrossRefGoogle Scholar
  160. 160.
    Stefan N, Ramsauer M, Jordan P, et al. Inhibition of 11beta-HSD1 with RO5093151 for non-alcoholic fatty liver disease: a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2014;2(5):406–16.PubMedCrossRefGoogle Scholar
  161. 161.
    Gibbs JP, Emery MG, McCaffery I, et al. Population pharmacokinetic/pharmacodynamic model of subcutaneous adipose 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) activity after oral administration of AMG 221, a selective 11beta-HSD1 inhibitor. J Clin Pharmacol. 2011;51(6):830–41.PubMedCrossRefGoogle Scholar
  162. 162.
    Thyagarajan B, Foster MT. Beiging of white adipose tissue as a therapeutic strategy for weight loss in humans. Horm Mol Biol Clin Investig. 2017.  https://doi.org/10.1515/hmbci-2017-0016.
  163. 163.
    Stanford KI, Goodyear LJ. Muscle-adipose tissue cross talk. Cold Spring Harb Perspect Med. 2018.  https://doi.org/10.1101/cshperspect.a029801.
  164. 164.
    Perakakis N, Triantafyllou GA, Fernandez-Real JM, et al. Physiology and role of irisin in glucose homeostasis. Nat Rev Endocrinol. 2017;13(6):324–37.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Kajimura S. Engineering fat cell fate to fight obesity and metabolic diseases. Keio J Med. 2015;64(4):65.PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Kusminski CM, Bickel PE, Scherer PE. Targeting adipose tissue in the treatment of obesity-associated diabetes. Nat Rev Drug Discov. 2016;15(9):639–60.PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Vargas-Castillo A, Fuentes-Romero R, Rodriguez-Lopez LA, Torres N, Tovar AR. Understanding the biology of thermogenic fat: is browning a new approach to the treatment of obesity? Arch Med Res. 2017;48(5):401–13.PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Dinas PC, Valente A, Granzotto M, et al. Browning formation markers of subcutaneous adipose tissue in relation to resting energy expenditure, physical activity and diet in humans. Horm Mol Biol Clin Investig. 2017.  https://doi.org/10.1515/hmbci-2017-0008.
  169. 169.
    Kiefer FW. The significance of beige and brown fat in humans. Endocr Connect. 2017;6(5):R70–9.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Mukherjee J, Baranwal A, Schade KN. Classification of therapeutic and experimental drugs for brown adipose tissue activation: potential treatment strategies for diabetes and obesity. Curr Diabetes Rev. 2016;12(4):414–28.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.ProScientoChula VistaUSA
  2. 2.Institute for Cardiovascular & Metabolic ResearchUniversity of ReadingReadingUK
  3. 3.LiverpatParisFrance
  4. 4.Institute of Cellular MedicineUniversity of NewcastleNewcastle upon TyneUK

Personalised recommendations