Advertisement

Global Planar Convolutions for Improved Context Aggregation in Brain Tumor Segmentation

  • Santi PuchEmail author
  • Irina Sánchez
  • Aura Hernández
  • Gemma Piella
  • Vesna Prc̆kovska
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11384)

Abstract

In this work, we introduce the Global Planar Convolution module as a building-block for fully-convolutional networks that aggregates global information and, therefore, enhances the context perception capabilities of segmentation networks in the context of brain tumor segmentation. We implement two baseline architectures (3D UNet and a residual version of 3D UNet, ResUNet) and present a novel architecture based on these two architectures, ContextNet, that includes the proposed Global Planar Convolution module. We show that the addition of such module eliminates the need of building networks with several representation levels, which tend to be over-parametrized and to showcase slow rates of convergence. Furthermore, we provide a visual demonstration of the behavior of GPC modules via visualization of intermediate representations. We finally participate in the 2018 edition of the BraTS challenge with our best performing models, that are based on ContextNet, and report the evaluation scores on the validation and the test sets of the challenge.

Keywords

Brain tumors 3D fully-convolutional CNN Magnetic resonance imaging Global planar convolution 

References

  1. 1.
    Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. Cancer Imaging Archive 286 (2017)Google Scholar
  2. 2.
    Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Cancer Imaging Archive 286 (2017)Google Scholar
  3. 3.
    Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)CrossRefGoogle Scholar
  4. 4.
    Bakas, S., Reyes, M., et al.: Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge. arXiv preprint arXiv:1811.02629 (2018)
  5. 5.
    Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. CoRR abs/1606.06650 (2016). http://arxiv.org/abs/1606.06650
  6. 6.
    Clevert, D., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (elus). CoRR abs/1511.07289 (2015). http://arxiv.org/abs/1511.07289
  7. 7.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. \(\text{Arxiv.}\; \text{ Org }\)7(3), 171–180 (2015).  https://doi.org/10.3389/fpsyg.2013.00124, http://arxiv.org/pdf/1512.03385v1.pdf
  8. 8.
    Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. CoRR abs/1502.03167 (2015). http://arxiv.org/abs/1502.03167
  9. 9.
    Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust brain tumour segmentation. CoRR abs/1711.01468 (2017). http://arxiv.org/abs/1711.01468
  10. 10.
    Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2014). http://arxiv.org/abs/1412.6980
  11. 11.
    Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015).  https://doi.org/10.1109/CVPR.2015.7298965
  12. 12.
    Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015).  https://doi.org/10.1109/TMI.2014.2377694. http://ieeexplore.ieee.org/document/6975210/CrossRefGoogle Scholar
  13. 13.
    Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993 (2015)CrossRefGoogle Scholar
  14. 14.
    National Brain Tumor Society: Quick brain tumor facts (2018). http://braintumor.org/brain-tumor-information/brain-tumor-facts/. Accessed 12 June 2018
  15. 15.
    Ostrom, Q.T., et al.: The epidemiology of glioma in adults: a “state of the science” review. Neuro-oncology 16(7), 896–913 (2014)CrossRefGoogle Scholar
  16. 16.
    Peng, C., Zhang, X., Yu, G., Luo, G., Sun, J.: Large kernel matters - improve semantic segmentation by global convolutional network. CoRR abs/1703.02719 (2017). http://arxiv.org/abs/1703.02719
  17. 17.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation, May 2015. http://arxiv.org/abs/1505.04597
  18. 18.
    Szegedy, C., et al.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9, June 2015.  https://doi.org/10.1109/CVPR.2015.7298594
  19. 19.
    Weiss, E., Hess, C.F.: The impact of gross tumor volume (GTV) and clinical target volume (CTV) definition on the total accuracy in radiotherapy theoretical aspects and practical experiences. Strahlenther Onkol 179(1), 21–30 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Santi Puch
    • 1
    Email author
  • Irina Sánchez
    • 1
  • Aura Hernández
    • 2
  • Gemma Piella
    • 3
  • Vesna Prc̆kovska
    • 1
  1. 1.QMENTABostonUSA
  2. 2.Computer Vision CenterUniversitat Autònoma de BarcelonaBarcelonaSpain
  3. 3.SIMBIOsys, Universitat Pompeu FabraBarcelonaSpain

Personalised recommendations