Advertisement

S3D-UNet: Separable 3D U-Net for Brain Tumor Segmentation

  • Wei Chen
  • Boqiang LiuEmail author
  • Suting Peng
  • Jiawei Sun
  • Xu Qiao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11384)

Abstract

Brain tumor is one of the leading causes of cancer death. Accurate segmentation and quantitative analysis of brain tumor are critical for diagnosis and treatment planning. Since manual segmentation is time-consuming, tedious and error-prone, a fully automatic method for brain tumor segmentation is needed. Recently, state-of-the-art approaches for brain tumor segmentation are built on fully convolutional neural networks (FCNs) using either 2D or 3D convolutions. However, 2D convolutions cannot make full use of the spatial information of volumetric medical image data, while 3D convolutions suffer from high expensive computational cost and memory demand. To address these problems, we propose a novel Separable 3D U-Net architecture using separable 3D convolutions. Preliminary results on BraTS 2018 validation set show that our proposed method achieved a mean enhancing tumor, whole tumor, and tumor core Dice scores of 0.74932, 0.89353 and 0.83093 respectively. Finally, during the testing stage we achieved competitive results with Dice scores of 0.68946, 0.83893, and 0.78347 for enhancing tumor, whole tumor, and tumor core, respectively.

Keywords

Separable Segmentation BraTS Convolutional neural networks 

Notes

Acknowledgment

This work was supported by the Department of Science and Technology of Shandong Province (Grant No. 2015ZDXX0801A01, ZR2014HQ054, 2017CXGC1502), National Natural Science Foundation of China (grant no. 61603218).

References

  1. 1.
    Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34, 1993–2024 (2015)CrossRefGoogle Scholar
  2. 2.
    Gordillo, N., Montseny, E., Sobrevilla, P.: State of the art survey on MRI brain tumor segmentation. Magn. Reson. Imaging 31, 1426–1438 (2013)CrossRefGoogle Scholar
  3. 3.
    Havaei, M., et al.: Brain tumor segmentation with Deep Neural Networks. Med. Image Anal. 35, 18–31 (2017)CrossRefGoogle Scholar
  4. 4.
    Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)CrossRefGoogle Scholar
  5. 5.
    Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: Brain tumor segmentation and radiomics survival prediction: contribution to the BRATS 2017 challenge. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 287–297. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-75238-9_25CrossRefGoogle Scholar
  6. 6.
    Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust brain tumour segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 450–462. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-75238-9_38CrossRefGoogle Scholar
  7. 7.
    Xie, S., Sun, C., Huang, J., Tu, Z., Murphy, K.: Rethinking spatiotemporal feature learning for video understanding. arXiv:1712.04851 [cs] (2017)
  8. 8.
    Bakas, S., Reyes, M., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge, arXiv preprint arXiv:1811.02629 (2018)
  9. 9.
    Bakas, S., et al.: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data. 4, 170117 (2017)CrossRefGoogle Scholar
  10. 10.
    Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. The Cancer Imaging Archive (2017)Google Scholar
  11. 11.
    Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. The Cancer Imaging Archive (2017)Google Scholar
  12. 12.
    Tustison, N.J., et al.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29, 1310–1320 (2010)CrossRefGoogle Scholar
  13. 13.
    Nyul, L.G., Udupa, J.K., Zhang, X.: New variants of a method of MRI scale standardization. IEEE Trans. Med. Imaging 19, 143–150 (2000)CrossRefGoogle Scholar
  14. 14.
    Wang, G., Li, W., Ourselin, S., Vercauteren, T.: Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 178–190. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-75238-9_16CrossRefGoogle Scholar
  15. 15.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_28CrossRefGoogle Scholar
  16. 16.
    Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. arXiv:1606.06650 [cs] (2016)
  17. 17.
    Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. arXiv:1607.08022 [cs] (2016)
  18. 18.
    Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Cardoso, M.J.: Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentations. arXiv:1707.03237 [cs], vol. 10553, pp. 240–248 (2017)CrossRefGoogle Scholar
  19. 19.
    Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Wei Chen
    • 1
  • Boqiang Liu
    • 1
    Email author
  • Suting Peng
    • 1
  • Jiawei Sun
    • 1
  • Xu Qiao
    • 1
  1. 1.Department of Biomedical Engineering, School of Control Science and EngineeringShandong UniversityJinanChina

Personalised recommendations