Advertisement

Brain Tumor Segmentation and Survival Prediction Using a Cascade of Random Forests

  • Szidónia LefkovitsEmail author
  • László Szilágyi
  • László Lefkovits
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11384)

Abstract

Brain tumor segmentation is a difficult task due to the strongly varying intensity and shape of gliomas. In this paper we propose a multi-stage discriminative framework for brain tumor segmentation based on BraTS 2018 dataset. The framework presented in this paper is a more complex segmentation system than our previous work presented at BraTS 2016. Here we propose a multi-stage discriminative segmentation model, where every stage is a binary classifier based on the random forest algorithm. Our multi-stage system attempts to follow the layered structure of tumor tissues provided in the annotation protocol. In each segmentation stage we dealt with four major difficulties: feature selection, determination of training database used, optimization of classifier performances and image post-processing. The framework was tested on the evaluation images from BraTS 2018. One of the most important results is the determination of the tumor ROI with a sensitivity of approximately 0.99 in stage I by considering only 16% of the brain in the subsequent stages. Based on the segmentation obtained we solved the survival prediction task using a random forest regressor. The results obtained are comparable to the best ones presented in previous BraTS Challenges.

Keywords

Multi-stage classifier Random forest Feature selection Variable importance MRI brain tumor segmentation 

References

  1. 1.
  2. 2.
  3. 3.
    The R project for statistical computing. https://www.r-project.org/
  4. 4.
    Multimodal Brain Tumor Segmentation Challenge 2018. https://www.med.upenn.edu/sbia/brats2018/
  5. 5.
    Multimodal Brain Tumor Segmentation Challenge Evaluation Website. https://www.cbica.upenn.edu/BraTS18/
  6. 6.
    Bakas, S., Reyes, M., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv preprint arXiv:1811.02629 (2018)
  7. 7.
    Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)CrossRefGoogle Scholar
  8. 8.
    Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. Cancer Imaging Arch. (2017).  https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q
  9. 9.
    Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Cancer Imaging Arch. (2017).  https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF
  10. 10.
    Bharath, H.N., Colleman, S., Sima D.M., Van Huffel, S.: Tumor segmentation from multi-parametric MRI using random forest with superpixel and tensor based feature extraction. In Proceedings of MICCAI-BRATS Challenge (2017)Google Scholar
  11. 11.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)CrossRefGoogle Scholar
  12. 12.
    Jakab, A.: Segmenting brain tumors with the slicer 3D software manual for providing expert segmentations for the BRATS tumor segmentation challenge. University of Debrecen/ETH Zürich (2012)Google Scholar
  13. 13.
    Goldstein, B.A., Polley, E.C., Briggs, F.: Random forests for genetic association studies. Stat. Appl. Genet. Mol. Biol. 10(1), 1544–6115 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lefkovits, L., Lefkovits, S., Emerich, S., Vaida M.F.: Random forest feature selection approach for image segmentation. In: Proceedings of the 9th International Conference on Machine Vision (ICMV), vol. 10341, p. 1034117 (2016)Google Scholar
  15. 15.
    Lefkovits, L., Lefkovits, S., Szilágyi, L.: Brain tumor segmentation with optimized random forest. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Winzeck, S., Handels, H. (eds.) BrainLes 2016. LNCS, vol. 10154, pp. 80–99. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-55524-9_9CrossRefGoogle Scholar
  16. 16.
    Menze, B.H., Jakab, A., Bauer, S., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)CrossRefGoogle Scholar
  17. 17.
    Phophalia, A., Maji, P.: Multimodal brain tumor segmentation using ensemble of forest method. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 159–168. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-75238-9_14CrossRefGoogle Scholar
  18. 18.
    Revanuru, K., Shah N.: Fully automatic brain tumour segmentation using random forests and patient survival prediction using XGBoost. In: Proceedings of MICCAI-BRATS (2017)Google Scholar
  19. 19.
    Soltaninejad, M., Zhang, L., Lambrou, T., Yang, G., Allinson, N., Ye, X.: MRI brain tumor segmentation using random forests and fully convolutional networks. In: Procedings of MICCAI-BRATS (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of Medicine, Pharmacy, Sciences and TechnologyTîrgu MureşRomania
  2. 2.Department of Electrical EngineeringSapientia Hungarian University of TransylvaniaTîrgu MureşRomania

Personalised recommendations