Advertisement

Glioma Segmentation with Cascaded UNet

  • Dmitry LachinovEmail author
  • Evgeny Vasiliev
  • Vadim Turlapov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11384)

Abstract

MRI analysis takes central position in brain tumor diagnosis and treatment, thus its precise evaluation is crucially important. However, its 3D nature imposes several challenges, so the analysis is often performed on 2D projections that reduces the complexity, but increases bias. On the other hand, time consuming 3D evaluation, like segmentation, is able to provide precise estimation of a number of valuable spatial characteristics, giving us understanding about the course of the disease.

Recent studies focusing on the segmentation task, report superior performance of Deep Learning methods compared to classical computer vision algorithms. But still, it remains a challenging problem. In this paper we present deep cascaded approach for automatic brain tumor segmentation. Similar to recent methods for object detection, our implementation is based on neural networks; we propose modifications to the 3D UNet architecture and augmentation strategy to efficiently handle multimodal MRI input, besides this we introduce approach to enhance segmentation quality with context obtained from models of the same topology operating on downscaled data. We evaluate presented approach on BraTS 2018 dataset and achieve promising results on test dataset with 14th place and Dice score of 0.720/0.878/0.785 for enhancing tumor, whole tumor and tumor core segmentation respectively.

Keywords

Segmentation BraTS UNet Cascaded UNet Multiple encoders 

References

  1. 1.
    Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci Data 4, 170117 (2017).  https://doi.org/10.1038/sdata.2017.117, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5685212/, 28872634[pmid]CrossRefGoogle Scholar
  2. 2.
    Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. The Cancer Imaging Archive (2017).  https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q
  3. 3.
    Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. The Cancer Imaging Archive (2017).  https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF
  4. 4.
    Bakas, S., Reyes, M., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge. CoRR abs/1811.02629 (2018). http://arxiv.org/abs/1811.02629
  5. 5.
    Chen, T., et al.: Mxnet: a flexible and efficient machine learning library for heterogeneous distributed systems. CoRR abs/1512.01274 (2015). http://arxiv.org/abs/1512.01274
  6. 6.
    Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46723-8_49CrossRefGoogle Scholar
  7. 7.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, June 2016.  https://doi.org/10.1109/CVPR.2016.90
  8. 8.
    Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: Brain tumor segmentation and radiomics survival prediction: contribution to the BRATS 2017 challenge. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 287–297. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-75238-9_25CrossRefGoogle Scholar
  9. 9.
    Johnson, H.J., McCormick, M., Ibáñez, L., Consortium, T.I.S.: The ITK Software Guide. Kitware Inc, third edn. (2013, In press). http://www.itk.org/ItkSoftwareGuide.pdf
  10. 10.
    Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. CoRR abs/1603.05959 (2016). http://arxiv.org/abs/1603.05959
  11. 11.
    Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015).  https://doi.org/10.1109/TMI.2014.2377694CrossRefGoogle Scholar
  12. 12.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_28CrossRefGoogle Scholar
  13. 13.
    Yushkevich, P.A., et al.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3), 1116–1128 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Lobachevsky State UniversityNizhny NovgorodRussian Federation
  2. 2.IntelNizhny NovgorodRussian Federation

Personalised recommendations