Advertisement

Segmentation of Brain Tumors Using DeepLabv3+

  • Ahana Roy ChoudhuryEmail author
  • Rami Vanguri
  • Sachin R. Jambawalikar
  • Piyush Kumar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11384)

Abstract

Multi-modal MRI scans are commonly used to grade brain tumors based on size and imaging appearance. As a result, imaging plays an important role in the diagnosis and treatment administered to patients. Deep learning based approaches in general, and convolutional neural networks Open image in new window in particular, have been utilized to achieve superior performance in the fields of object detection and image segmentation. In this paper, we propose to utilize the DeepLabv3+ network for the task of brain tumor segmentation. For this task, we build 18 different models using various combinations of the T1CE, FLAIR, T1 and T2 images to identify the whole tumor, the tumor core and the enhancing core of the brain tumor for the testing and validation data sets. We use the MICCAI BraTS training data, which consists of 285 cases, to train our network. Our method involves the segmentation of individual slices in three orientations using 18 different combinations of slices and a majority voting-based combination of the results of some of the classifiers that use the same combination of slices, but in different orientations. Finally, for each of the three regions, we train a separate model, which uses the results from the 18 classifiers as its inputs. The outputs of the 18 models are combined using bit packing to prepare the inputs to the final classifiers for the three regions. We achieve mean Dice coefficients of 0.7086, 0.7897 and 0.8755 for the enhancing tumor, the tumor core and the whole tumor regions respectively.

Keywords

Image segmentation Convolutional neural networks DeepLab MRI Tumor Enhancing tumor Tumor core 

References

  1. 1.
    Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation. CoRR abs/1511.00561 (2015). http://arxiv.org/abs/1511.00561
  2. 2.
    Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection (2017). https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF
  3. 3.
    Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017). Data Descriptor http://dx.doi.org/10.1038/sdata.2017.117CrossRefGoogle Scholar
  4. 4.
    Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection (2017). https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q
  5. 5.
    Bakas, S., Reyes, M., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge. arXiv preprint (2018). https://arxiv.org/abs/1811.02629
  6. 6.
    Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. CoRR abs/1606.00915 (2016). http://arxiv.org/abs/1606.00915
  7. 7.
    Chen, L., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. CoRR abs/1706.05587 (2017). http://arxiv.org/abs/1706.05587
  8. 8.
    Chen, L., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. CoRR abs/1802.02611 (2018). http://arxiv.org/abs/1802.02611CrossRefGoogle Scholar
  9. 9.
    Chollet, F.: Xception: deep learning with depthwise separable convolutions. CoRR abs/1610.02357 (2016). http://arxiv.org/abs/1610.02357
  10. 10.
    DeAngelis, L.M.: Brain tumors. N. Engl. J. Med. 344(2), 114–123 (2001).  https://doi.org/10.1056/NEJM200101113440207. pMID: 11150363CrossRefGoogle Scholar
  11. 11.
    Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results. http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
  12. 12.
  13. 13.
    Google: deeplabv3\(\_\)pascal\(\_\)train\(\_\)aug (2018). http://download.tensorflow.org/models/deeplabv3_pascal_train_aug_2018_01_04.tar.gz
  14. 14.
    Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust brain tumour segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, pp. 450–462. Springer International Publishing, Cham (2018)CrossRefGoogle Scholar
  15. 15.
    Kamnitsas, K., et al.: Efficient multi-scale 3d CNN with fully connected CRF for accurate brain lesion segmentation. CoRR abs/1603.05959 (2016). http://arxiv.org/abs/1603.05959
  16. 16.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates, Inc. (2012). http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
  17. 17.
    Li, R., et al.: Deepunet: a deep fully convolutional network for pixel-level sea-land segmentation. CoRR abs/1709.00201 (2017). http://arxiv.org/abs/1709.00201
  18. 18.
    Liu, J., Li, M., Wang, J., Wu, F., Liu, T., Pan, Y.: A survey of mri-based brain tumor segmentation methods. Tsinghua Sci. Technol. 19(6), 578–595 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Louis, D.N., et al.: The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 131(6), 803–820 (2016).  https://doi.org/10.1007/s00401-016-1545-1CrossRefGoogle Scholar
  20. 20.
    Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015).  https://doi.org/10.1109/TMI.2014.2377694CrossRefGoogle Scholar
  21. 21.
    Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35(5), 1240–1251 (2016).  https://doi.org/10.1109/TMI.2016.2538465CrossRefGoogle Scholar
  22. 22.
    Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. CoRR abs/1505.04597 (2015). http://arxiv.org/abs/1505.04597Google Scholar
  23. 23.
    Wachinger, C., Reuter, M., Klein, T.: Deepnat: deep convolutional neural network for segmenting neuroanatomy. NeuroImage 170, 434–445 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ahana Roy Choudhury
    • 1
    Email author
  • Rami Vanguri
    • 2
    • 3
  • Sachin R. Jambawalikar
    • 2
  • Piyush Kumar
    • 1
  1. 1.Department of Computer ScienceFlorida State UniversityTallahasseeUSA
  2. 2.Department of RadiologyColumbia University Medical CenterNew YorkUSA
  3. 3.Data Science InstituteColumbia UniversityNew YorkUSA

Personalised recommendations