Advertisement

Segmentation of Brain Tumors and Patient Survival Prediction: Methods for the BraTS 2018 Challenge

  • Leon WeningerEmail author
  • Oliver Rippel
  • Simon Koppers
  • Dorit Merhof
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11384)

Abstract

Brain tumor localization and segmentation is an important step in the treatment of brain tumor patients. It is the base for later clinical steps, e.g., a possible resection of the tumor. Hence, an automatic segmentation algorithm would be preferable, as it does not suffer from inter-rater variability. On top, results could be available immediately after the brain imaging procedure. Using this automatic tumor segmentation, it could also be possible to predict the survival of patients. The BraTS 2018 challenge consists of these two tasks: tumor segmentation in 3D-MRI images of brain tumor patients and survival prediction based on these images. For the tumor segmentation, we utilize a two-step approach: First, the tumor is located using a 3D U-net. Second, another 3D U-net – more complex, but with a smaller output size – detects subtle differences in the tumor volume, i.e., it segments the located tumor into tumor core, enhanced tumor, and peritumoral edema.

The survival prediction of the patients is done with a rather simple, yet accurate algorithm which outperformed other tested approaches on the train set when thoroughly cross-validated. This finding is consistent with our performance on the test set - we achieved 3rd place in the survival prediction task of the BraTS Challenge 2018.

Keywords

BraTS 2018 Brain tumor Automatic segmentation Survival prediction Deep learning 

References

  1. 1.
    Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. The Cancer Imaging Archive (2017)Google Scholar
  2. 2.
    Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. The Cancer Imaging Archive (2017)Google Scholar
  3. 3.
    Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Scientific Data 4, 170117 EP, September 2017.  https://doi.org/10.1038/sdata.2017.117CrossRefGoogle Scholar
  4. 4.
    Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv preprint arXiv:1811.02629
  5. 5.
    Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46723-8_49CrossRefGoogle Scholar
  6. 6.
    Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: Brain tumor segmentation and radiomics survival prediction: contribution to the BRATS 2017 challenge. CoRR abs/1802.10508 (2018). http://arxiv.org/abs/1802.10508
  7. 7.
    Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: No new-net. CoRR abs/1809.10483 (2018). http://arxiv.org/abs/1809.10483
  8. 8.
    Isensee, F., et al.: nnU-Net: self-adapting framework for U-Net-based medical image segmentation. CoRR abs/1809.10486 (2018). http://arxiv.org/abs/1809.10486
  9. 9.
    Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust brain tumour segmentation. In: Crimi, et al. [6], pp. 450–462.  https://doi.org/10.1007/978-3-319-75238-9_38CrossRefGoogle Scholar
  10. 10.
    Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2014). http://arxiv.org/abs/1412.6980
  11. 11.
    Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imag. 34(10), 1993–2024 (2015).  https://doi.org/10.1109/TMI.2014.2377694CrossRefGoogle Scholar
  12. 12.
    Milletari, F., Navab, N., Ahmadi, S.: V-Net: Fully convolutional neural networks for volumetric medical image segmentation. CoRR abs/1606.04797 (2016). http://arxiv.org/abs/1606.04797
  13. 13.
    Paszke, A., et al.: Automatic differentiation in PyTorch. In: NIPS-W (2017)Google Scholar
  14. 14.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015, part III. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_28CrossRefGoogle Scholar
  15. 15.
    Ulyanov, D., Vedaldi, A., Lempitsky, V.S.: Instance normalization: the missing ingredient for fast stylization. CoRR abs/1607.08022 (2016). http://arxiv.org/abs/1607.08022
  16. 16.
    Wang, G., Li, W., Ourselin, S., Vercauteren, T.: Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. In: Crimi, et al. [6], pp. 178–190.  https://doi.org/10.1007/978-3-319-75238-9_16CrossRefGoogle Scholar
  17. 17.
    Yang, T.L., Ou, Y.N., Huang, T.Y.: Automatic segmentation of brain tumor from MR images using SegNet: selection of training data sets. In: Crimi, et al. [6], pp. 450–462.  https://doi.org/10.1007/978-3-319-75238-9Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Leon Weninger
    • 1
    Email author
  • Oliver Rippel
    • 1
  • Simon Koppers
    • 1
  • Dorit Merhof
    • 1
  1. 1.Institute of Imaging & Computer VisionRWTH Aachen UniversityAachenGermany

Personalised recommendations