Advertisement

Contra-Lateral Information CNN for Core Lesion Segmentation Based on Native CTP in Acute Stroke

  • Jeroen BertelsEmail author
  • David Robben
  • Dirk Vandermeulen
  • Paul Suetens
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11383)

Abstract

Stroke is an important neuro-vascular disease, for which distinguishing necrotic from salvageable brain tissue is a useful, albeit challenging task. In light of the Ischemic Stroke Lesion Segmentation challenge (ISLES) of 2018 we propose a deep learning-based method to automatically segment necrotic brain tissue at the time of acute imaging based on CT perfusion (CTP) imaging. The proposed convolutional neural network (CNN) makes a voxelwise segmentation of the core lesion. In order to predict the tissue status in one voxel it processes CTP information from the surrounding spatial context from both this voxel and from a corresponding voxel at the contra-lateral side of the brain. The contra-lateral CTP information is obtained by registering the reflection w.r.t. a sagittal plane through the geometric center. Preprocessed training data was augmented during training and a five-fold cross-validation was used to experiment for the optimal hyperparameters. We used weighted binary cross-entropy and re-calibrated the probabilities upon prediction. The final segmentations were obtained by thresholding the probabilities at 0.50 from the model that performed best w.r.t. the Dice score during training. The proposed method achieves an average validation Dice score of 0.45. Our method slightly underperformed on the ISLES 2018 challenge test dataset with the average Dice score dropping to 0.38.

Keywords

Stroke CTP Core CNN 

References

  1. 1.
    Ischemic Stroke Lesion Segmentation (ISLES). www.isles-challenge.org
  2. 2.
    Berkhemer, O.A., et al.: A randomized trial of intraarterial treatment for acute ischemic stroke. N. Engl. J. Med. 372(1), 11–20 (2015).  https://doi.org/10.1056/NEJMoa1411587CrossRefGoogle Scholar
  3. 3.
    Fieselmann, A., Kowarschik, M., Ganguly, A., Hornegger, J., Fahrig, R.: Deconvolution-based CT and MR brain perfusion measurement: theoretical model revisited and practical implementation details. Int. J. Biomed. Imaging 2011 (2011).  https://doi.org/10.1155/2011/467563CrossRefGoogle Scholar
  4. 4.
    Goyal, M., et al.: Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet 387, 1723–1731 (2016).  https://doi.org/10.1016/S0140-6736(16)00163-XCrossRefGoogle Scholar
  5. 5.
    von Kummer, R., Dzialowski, I.: Imaging of cerebral ischemic edema and neuronal death. Neuroradiology 59(6), 545–553 (2017).  https://doi.org/10.1007/s00234-017-1847-6CrossRefGoogle Scholar
  6. 6.
    Robben, D., Bertels, J., Willems, S.: DeepVoxNet. Technical report, KU Leuven: KUL/ESAT/PSI/1801 (2018)Google Scholar
  7. 7.
    Robben, D., Suetens, P.: Perfusion parameter estimation using neural networks and data augmentation. MICCAI SWITCH (2018). https://arxiv.org/abs/1810.04898
  8. 8.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_28CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jeroen Bertels
    • 1
    Email author
  • David Robben
    • 1
  • Dirk Vandermeulen
    • 1
  • Paul Suetens
    • 1
  1. 1.Medical Image Computing (ESAT/PSI)KU LeuvenLeuvenBelgium

Personalised recommendations