Advertisement

CT Brain Perfusion: A Clinical Perspective

  • Arsany HakimEmail author
  • Roland Wiest
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11383)

Abstract

Computed tomography perfusion (CTP) is an important exam performed in neuroradiology that adds functional information regarding hemodynamics to that obtained from morphological imaging and thereby supports clinical decision-making in several vascular and non-vascular conditions.

This paper outlines the clinical applications of CTP, its advantages over MRI and disadvantages. Factors affecting the results of CTP will also be discussed. Finally, a clinically oriented overview of the calculated perfusion parameters and their value will be provided.

Keywords

CT Perfusion Stroke 

References

  1. 1.
    Jung, S., et al.: Stroke guidelines of the Bern stroke network physicians on duty. http://www.neurologie.insel.ch/fileadmin/neurologie/neurologie_users/Unser_Angebot/Dokumente/Stroke_Guidelines_2018.pdf. Accessed 11 Oct 2018
  2. 2.
    Gilberto González, R., et al.: The Massachusetts General Hospital acute stroke imaging algorithm: an experience and evidence based approach. J. Neurointerv. Surg. 5, i7–i12 (2013).  https://doi.org/10.1136/neurintsurg-2013-010715CrossRefGoogle Scholar
  3. 3.
    Powers, W.J., et al.: 2018 guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 49, e46–e99 (2018).  https://doi.org/10.1161/STR.0000000000000158CrossRefGoogle Scholar
  4. 4.
    Thust, S.C., Burke, C., Siddiqui, A.: Neuroimaging findings in sickle cell disease. Br. J. Radiol. 87(1040) (2014).  https://doi.org/10.1259/bjr.20130699CrossRefGoogle Scholar
  5. 5.
    Orrison, W.W., et al.: Whole-brain dynamic CT angiography and perfusion imaging. Clin. Radiol. 66(6), 566–574 (2011).  https://doi.org/10.1016/j.crad.2010.12.014CrossRefGoogle Scholar
  6. 6.
    Gaudiello, F., et al.: Sixty-four-section CT cerebral perfusion evaluation in patients with carotid artery stenosis before and after stenting with a cerebral protection device. Am. J. Neuroradiol. 29(5), 919–923 (2008).  https://doi.org/10.3174/ajnr.A0945CrossRefGoogle Scholar
  7. 7.
    Huang, B.Y., Castillo, M.: Hypoxic-ischemic brain injury: imaging findings from birth to adulthood. RadioGraphics 28(2), 417–439 (2008).  https://doi.org/10.1148/rg.282075066CrossRefGoogle Scholar
  8. 8.
  9. 9.
    Derdeyn, C.P., et al.: Severe hemodynamic impairment and border zone-region infarction. Radiology 220(1), 195–201 (2001)CrossRefGoogle Scholar
  10. 10.
    Gelfand, J.M., Wintermark, M., Josephson, S.A.: Cerebral perfusion-CT patterns following seizure. Eur. J. Neurol. 17(4), 594–601 (2010).  https://doi.org/10.1111/j.1468-1331.2009.02869.xCrossRefGoogle Scholar
  11. 11.
    Floery, D., et al.: Acute-onset migrainous aura mimicking acute stroke: MR perfusion imaging features. Am. J. Neuroradiol. 33(8), 1547–1552 (2012).  https://doi.org/10.3174/ajnr.A3020CrossRefGoogle Scholar
  12. 12.
    Vulcu, S., et al.: Repetitive CT perfusion for detection of cerebral vasospasm-related hypoperfusion in aneurysmal subarachnoid hemorrhage. World Neurosurg. (18), 32263–32270 (2018).  https://doi.org/10.1016/j.wneu.2018.09.208CrossRefGoogle Scholar
  13. 13.
    Zhang, H., Zhang, B., Li, S., Liang, C., Xu, K., Li, S.: Whole brain CT perfusion combined with CT angiography in patients with subarachnoid hemorrhage and cerebral vasospasm. Clin. Neurol. Neurosurg. 115(12), 2496–2501 (2013).  https://doi.org/10.1016/j.clineuro.2013.10.004CrossRefGoogle Scholar
  14. 14.
    Binaghi, S., et al.: CT angiography and perfusion CT in cerebral vasospasm after subarachnoid hemorrhage. AJNR: Am. J. Neuroradiol. 28(4), 750–758 (2007). PMID: 17416833Google Scholar
  15. 15.
    Sanelli, P.C., et al.: Can CT perfusion guide patient selection for treatment of delayed cerebral ischemia? Adv. Comput. Tomogr. 2, 4–12 (2013).  https://doi.org/10.4236/act.2013.21002CrossRefGoogle Scholar
  16. 16.
    Shankar, J.J.S., Vandorpe, R.: CT perfusion for confirmation of brain death. Am. J. Neuroradiol. 34(6), 1175–1179 (2013).  https://doi.org/10.3174/ajnr.A3376CrossRefGoogle Scholar
  17. 17.
    Jain, R.: Perfusion CT imaging of brain tumors: an overview. Am. J. Neuroradiol. 32(9), 1570–1577 (2011).  https://doi.org/10.3174/ajnr.a2263CrossRefGoogle Scholar
  18. 18.
    Haldorsen, I.S., Espeland, A., Larsson, E.-M.: Central nervous system lymphoma: characteristic findings on traditional and advanced imaging. Am. J. Neuroradiol. 32(6), 984–992 (2011).  https://doi.org/10.3174/ajnr.A2171CrossRefGoogle Scholar
  19. 19.
    Wintermark, M., Sanelli, P.C., Anzai, Y., Tsiouris, A.J., Whitlow, C.T.: Imaging evidence and recommendations for traumatic brain injury: advanced neuro-and neurovascular imaging techniques. J. Am. Coll. Radiol. 12(2), e1–e14 (2015).  https://doi.org/10.1016/j.jacr.2014.10.014CrossRefGoogle Scholar
  20. 20.
    Tang, Z., et al.: Low-dose cerebral CT perfusion imaging (CTPI) of senile dementia: diagnostic performance. Arch. Gerontol. Geriatr. 56(1), 61–67 (2013).  https://doi.org/10.1016/J.ARCHGER.2012.05.009CrossRefGoogle Scholar
  21. 21.
    Konstas, A.A., Goldmakher, G.V., Lee, T.-Y., Lev, M.H.: Theoretic basis and technical implementations of CT perfusion in acute ischemic stroke, part 1: theoretic basis. AJNR: Am. J. Neuroradiol. 30(4), 662–668 (2009).  https://doi.org/10.3174/ajnr.A1487CrossRefGoogle Scholar
  22. 22.
    Othman, A.E., et al.: Impact of image denoising on image quality, quantitative parameters and sensitivity of ultra-low-dose volume perfusion CT imaging. Eur. Radiol. 26(1), 167–174 (2016).  https://doi.org/10.1007/s00330-015-3853-6MathSciNetCrossRefGoogle Scholar
  23. 23.
    Hakim, A., Vulcu, S., Dobrocky, T., Z’Graggen, W.J., Wagner, F.: Using an orbit shield during volume perfusion CT: is it useful protection or an obstacle? Clin. Radiol. 73(9), 834.e1–834.e8 (2018).  https://doi.org/10.1016/j.crad.2018.05.003CrossRefGoogle Scholar
  24. 24.
    Konstas, A.A., Wintermark, M., Lev, M.H.: CT Perfusion imaging in acute stroke. Neuroimaging Clin. N. Am. 21(2), 215–238 (2011).  https://doi.org/10.1016/J.NIC.2011.01.008CrossRefGoogle Scholar
  25. 25.
    Konstas, A.A., Goldmakher, G.V., Lee, T.-Y., Lev, M.H.: Theoretic basis and technical implementations of CT perfusion in acute ischemic stroke, part 2: technical implementations. AJNR: Am. J. Neuroradiol. 30(5), 885–892 (2009).  https://doi.org/10.3174/ajnr.A1492CrossRefGoogle Scholar
  26. 26.
    Lin, L., et al.: Correction for delay and dispersion results in more accurate cerebral blood flow ischemic core measurement in acute stroke. Stroke 49(4), 924–930 (2018).  https://doi.org/10.1161/STROKEAHA.117.019562CrossRefGoogle Scholar
  27. 27.
    Klabunde, R.: Hemodynamics (pressure, flow, and resistance). https://www.cvphysiology.com/Hemodynamics/H001.htm. Accessed 5 Oct 2018
  28. 28.
    Wikipedia: Hagen – Poiseuille equation. https://en.wikipedia.org/wiki/Hagen–Poiseuille_equation. Accessed 5 Oct 2018
  29. 29.
    Shapiro, M.: Perfusion primer. http://neuroangio.org/neuroangio-topics/perfusion-primer/. Accessed 4 Oct 2018
  30. 30.
    Calamante, F., Christensen, S., Desmond, P.M., Østergaard, L., Davis, S.M., Connelly, A.: The physiological significance of the time-to-maximum (Tmax) parameter in perfusion MRI. Stroke 41(6), 1169–1174 (2010).  https://doi.org/10.1161/STROKEAHA.110.580670CrossRefGoogle Scholar
  31. 31.
    Olivot, J.-M., et al.: Optimal Tmax threshold for predicting penumbral tissue in acute stroke. Stroke 40(2), 469–475 (2009).  https://doi.org/10.1161/STROKEAHA.108.526954CrossRefGoogle Scholar
  32. 32.
    Dolatowski, K., et al.: Volume perfusion CT (VPCT) for the differential diagnosis of patients with suspected cerebral vasospasm: qualitative and quantitative analysis of 3D parameter maps. Eur. J. Radiol. 83(10), 1881–1889 (2014).  https://doi.org/10.1016/j.ejrad.2014.06.020CrossRefGoogle Scholar
  33. 33.
    Thierfelder, K.M., et al.: Whole-brain CT perfusion: reliability and reproducibility of volumetric perfusion deficit assessment in patients with acute ischemic stroke. Neuroradiology 55(7), 827–835 (2013).  https://doi.org/10.1007/s00234-013-1179-0CrossRefGoogle Scholar
  34. 34.
    Tofts, P.S., et al.: Estimating kinetic parameters from dynamic contrast-enhanced t1-weighted MRI of a diffusable tracer: standardized quantities and symbols. J. Magn. Reson. Imaging 10(3), 223–232 (1999).  https://doi.org/10.1002/(SICI)1522-2586(199909)10:3%3c223:AID-JMRI2%3e3.0.CO;2-SCrossRefGoogle Scholar
  35. 35.
    Patankar, T.F., et al.: Is volume transfer coefficient (Ktrans) related to histologic grade in human gliomas? Am. J. Neuroradiol. 26(10), 2455–2465 (2005). PMID: 16286385Google Scholar
  36. 36.
    Elster, A.: Ktrans & permeability. http://mriquestions.com/k-trans–permeability.html. Accessed 5 Oct 2018

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Support Center for Advanced NeuroimagingUniversity Institute of Diagnostic and Interventional Neuroradiology, Bern University Hospital, Inselspital, University of BernBernSwitzerland

Personalised recommendations