Segmentation of Post-operative Glioblastoma in MRI by U-Net with Patient-Specific Interactive Refinement

  • Ashis Kumar DharaEmail author
  • Kalyan Ram Ayyalasomayajula
  • Erik Arvids
  • Markus Fahlström
  • Johan Wikström
  • Elna-Marie Larsson
  • Robin Strand
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11383)


Accurate volumetric change estimation of glioblastoma is very important for post-surgical treatment follow-up. In this paper, an interactive segmentation method was developed and evaluated with the aim to guide volumetric estimation of glioblastoma. U-Net based fully convolutional network is used for initial segmentation of glioblastoma from post contrast MR images. The max flow algorithm is applied on the probability map of U-Net to update the initial segmentation and the result is displayed to the user for interactive refinement. Network update is performed based on the corrected contour by considering patient specific learning to deal with large context variations among different images. The proposed method is evaluated on a clinical MR image database of 15 glioblastoma patients with longitudinal scan data. The experimental results depict an improvement of segmentation performance due to patient specific fine-tuning. The proposed method is computationally fast and efficient as compared to state-of-the-art interactive segmentation tools. This tool could be useful for post-surgical treatment follow-up with minimal user intervention.


  1. 1.
    Ostrom, Q.T., et al.: CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008-2012. Neuro-oncology 17(Suppl. 4) (2015)CrossRefGoogle Scholar
  2. 2.
    Haider, S.A., et al.: Single-click, semi-automatic lung nodule contouring using hierarchical conditional random fields. In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 1139–1142. IEEE (2015)Google Scholar
  3. 3.
    Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Trans. Image Process. 7(3), 359–369 (1998)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Rother, C., Kolmogorov, V., Blake, A.: GrabCut: interactive foreground extraction using iterated graph cuts. In: ACM Transactions on Graphics (TOG), vol. 23, pp. 309–314. ACM (2004)Google Scholar
  5. 5.
    Lee, C.-H., Wang, S., Murtha, A., Brown, M.R.G., Greiner, R.: Segmenting brain tumors using pseudo–conditional random fields. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008. LNCS, vol. 5241, pp. 359–366. Springer, Heidelberg (2008). Scholar
  6. 6.
    Tustison, N.J., et al.: Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation (simplified) with ANTsR. Neuroinformatics 13(2), 209–225 (2015)CrossRefGoogle Scholar
  7. 7.
    Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)CrossRefGoogle Scholar
  8. 8.
    Lyksborg, M., Puonti, O., Agn, M., Larsen, R.: An ensemble of 2D convolutional neural networks for tumor segmentation. In: Paulsen, R.R., Pedersen, K.S. (eds.) SCIA 2015. LNCS, vol. 9127, pp. 201–211. Springer, Cham (2015). Scholar
  9. 9.
    Dvorak, P., Menze, B.: Structured prediction with convolutional neural networks for multimodal brain tumor segmentation. In: Proceedings of the Multimodal Brain Tumor Image Segmentation Challenge, pp. 13–24 (2015)Google Scholar
  10. 10.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). Scholar
  11. 11.
    Armstrong, C.J., Price, B.L., Barrett, W.A.: Interactive segmentation of image volumes with live surface. Comput. Graph. 31(2), 212–229 (2007)CrossRefGoogle Scholar
  12. 12.
    Cates, J.E., Lefohn, A.E., Whitaker, R.T.: GIST an interactive, GPU-based level set segmentation tool for 3D medical images. Med. Image Anal. 8(3), 217–231 (2004)CrossRefGoogle Scholar
  13. 13.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004)CrossRefGoogle Scholar
  14. 14.
    Malmberg, F., Strand, R., Kullberg, J., Nordenskjöld, R., Bengtsson, E.: Smart paint a new interactive segmentation method applied to MR prostate segmentation. In: MICCAI Grand Challenge: Prostate MR Image Segmentation 2012 (2012)Google Scholar
  15. 15.
  16. 16.
    Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
  17. 17.
    Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. preprint arXiv:1207.0580 (2012)
  18. 18.
    Ayyalasomayajula, K.R., Brun, A.: Historical document binarization combining semantic labeling and graph cuts. In: Sharma, P., Bianchi, F.M. (eds.) SCIA 2017. LNCS, vol. 10269, pp. 386–396. Springer, Cham (2017). Scholar
  19. 19.
    Yushkevich, P.A., Gao, Y., Gerig, G.: ITK-SNAP: an interactive tool for semi-automatic segmentation of multi-modality biomedical images. In: 2016 IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), pp. 3342–3345. IEEE (2016)Google Scholar
  20. 20.
    Fedorov, A., et al.: 3D slicer as an image computing platform for the quantitative imaging network. Magn. Reson. Imaging 30(9), 1323–1341 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ashis Kumar Dhara
    • 1
    Email author
  • Kalyan Ram Ayyalasomayajula
    • 1
  • Erik Arvids
    • 2
  • Markus Fahlström
    • 2
  • Johan Wikström
    • 2
  • Elna-Marie Larsson
    • 2
  • Robin Strand
    • 1
    • 2
  1. 1.Centre for Image AnalysisUppsala UniversityUppsalaSweden
  2. 2.Department of Surgical Sciences, RadiologyUppsala UniversityUppsalaSweden

Personalised recommendations