Bubble Dynamics

  • Rachel PfliegerEmail author
  • Sergey I. Nikitenko
  • Carlos Cairós
  • Robert Mettin
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)


Bubble dynamics and cavitation have been recognized as a relevant topic of physics and engineering for more than 100 years. Starting with erosion problems at ship propellers end of the nineteenth century [1, 2], experimental and theoretical research went on to intense ultrasound fields in liquids after World War I [3]. However, the phenomena are intrinsically difficult to investigate since the involved spatial scales span many orders of magnitude, the timescales are partly extremely fast, and the behavior includes important nonlinearities.


  1. 1.
    Silberrad D (1912) Propeller erosion. Engineering 33:33–35Google Scholar
  2. 2.
    Rayleigh L (1917) On the pressure developed in a liquid during the collapse of a spherical cavity. Phil Mag Ser 6(34):94–98CrossRefGoogle Scholar
  3. 3.
    Wood RW, Loomis AL (1927) XXXVIII The physical and biological effects of high-frequency sound-waves of great intensity. Lond, Edinb, Dublin Philos Mag J Sci 4(22):417–436CrossRefGoogle Scholar
  4. 4.
    Flynn HG (1964) Physics of acoustic cavitation in liquids. In: Mason WP (ed) Physical acoustics, vol 1, Part B. Academic Press, New York, pp 57–172Google Scholar
  5. 5.
    Rozenberg LD (1971) High-intensity ultrasonic fields. Plenum Press, New YorkCrossRefGoogle Scholar
  6. 6.
    Neppiras EA (1980) Acoustic cavitation. Phys Rep 61(3):159–251CrossRefGoogle Scholar
  7. 7.
    Young FR (1989) Cavitation. McGraw-Hill, LondonGoogle Scholar
  8. 8.
    Leighton TG (1994) The acoustic bubble. Academic Press, LondonGoogle Scholar
  9. 9.
    Brennen EG (1995) Cavitation and bubble dynamics. Oxford University Press, New YorkGoogle Scholar
  10. 10.
    Young FR (2005) Sonoluminescence. CRC Press, Boca RatonGoogle Scholar
  11. 11.
    Mason TJ, Lorimer JP (1988) Sonochemistry. WileyGoogle Scholar
  12. 12.
    Mason TJ (ed) (1999) Advances in sonochemistry, vol 5. Jai Press, StamfordGoogle Scholar
  13. 13.
    Lauterborn W, Kurz T, Mettin R, Ohl C-D (1999) Experimental and theoretical bubble dynamics. Adv Chem Phys 110: 295–380Google Scholar
  14. 14.
    Ohl C-D, Kurz T, Geisler R, Lindau O, Lauterborn W (1999) Bubble dynamics, shock waves and sonoluminescence. Phil Trans R Soc Lond A 357:269–294CrossRefGoogle Scholar
  15. 15.
    Mettin R (2007) From a single bubble to bubble structures in acoustic cavitation. In: Kurz T, Parlitz U, Kaatze U (eds) Oscillations, waves and interactions. Universitätsverlag Göttingen, Göttingen, pp 171–198Google Scholar
  16. 16.
    Lauterborn W, Kurz T (2010) Physics of bubble oscillations. Rep Prog Phys 73:106501CrossRefGoogle Scholar
  17. 17.
    Lauterborn W, Mettin R (2015) Acoustic cavitation: bubble dynamics in high-power ultrasonic fields. In: Gallego-Juárez JA, Graff KF (eds) Power ultrasonics. Elsevier, pp 37–78Google Scholar
  18. 18.
    Mettin R, Cairós C (2016) Bubble dynamics and observations. In: Ashokkumar M et al (eds) Handbook of ultrasonics and sonochemistry. Springer Science + Business Media, SingaporeCrossRefGoogle Scholar
  19. 19.
    Harvey EN, McElroy WD, Whiteley AH (1947) On cavity formation in water. J Appl Phys 18(2):162–172CrossRefGoogle Scholar
  20. 20.
    Fox FE, Herzfeld KF (1954) Gas bubbles with organic skin as cavitation nuclei. J Acoust Soc Am 26(6):984–989CrossRefGoogle Scholar
  21. 21.
    Crum LA (1982) Nucleation and stabilization of microbubbles in liquids. Appl Sci Res 38(1):101–115CrossRefGoogle Scholar
  22. 22.
    Yasui K, Tuziuti T, Kanematsu W, Kato K (2016) Dynamic equilibrium model for a bulk nanobubble and a microbubble partly covered with hydrophobic material. Langmuir 32(43):11101–11110PubMedCrossRefGoogle Scholar
  23. 23.
    Keller AP (1974) Investigations concerning scale effects of the inception of cavitation. In: Proceedings I mechanical engineering conference on cavitation, pp 109–117Google Scholar
  24. 24.
    Reuter F, Lesnik S, Ayaz-Bustami K, Brenner G, Mettin R (2018) Bubble size measurements in different acoustic cavitation structures: filaments, clusters, and the acoustically cavitated jet. Ultrason Sonochem. Available online 16 May 2018.
  25. 25.
    Minnaert M (1933) On musical air bubbles and the sounds of running water. Phil Mag Ser 7(16):235–248CrossRefGoogle Scholar
  26. 26.
    Parlitz U, Englisch V, Scheffczyk C, Lauterborn W (1990) Bifurcation structure of bubble oscillators. J Acoust Soc Am 88:1061CrossRefGoogle Scholar
  27. 27.
    Hilgenfeldt S, Grossmann S, Lohse D (1999) Sonoluminescence light emission. Phys Fluids 11:1318CrossRefGoogle Scholar
  28. 28.
    Hilgenfeldt S, Brenner MP, Grossmann S, Lohse D (1998) Analysis of Rayleigh-Plesset dynamics for sonoluminescing bubbles. J Fluid Mech 365:171–204CrossRefGoogle Scholar
  29. 29.
    Prosperetti A, Lezzi A (1986) Bubble dynamics in a compressible liquid. Part 1. First-order theory. J Fluid Mech 168:457–478CrossRefGoogle Scholar
  30. 30.
    Kamath V, Prosperetti A, Egolfopoulos FN (1993) A theoretical study of sonoluminescence. J Acoust Soc Am 94(1):248–260CrossRefGoogle Scholar
  31. 31.
    Yasui K (1997) Alternative model of single-bubble sonoluminescence. Phys Rev E 56:6750CrossRefGoogle Scholar
  32. 32.
    Keller JB, Miksis M (1980) Bubble oscillations of large amplitude. J Acoust Soc Am 68:628CrossRefGoogle Scholar
  33. 33.
    Mettin R, Cairós C, Troia A (2015) Sonochemistry and bubble dynamics. Ultrason Sonochem 25:24–30PubMedCrossRefGoogle Scholar
  34. 34.
    Thiemann A, Holsteyns F, Cairos C, Mettin R (2017) Sonoluminescence and dynamics of cavitation bubble populations in sulfuric acid. Ultrason Sonochem 34:663–676PubMedCrossRefGoogle Scholar
  35. 35.
    Blake FG (1949) Harvard University Acoustic Research Laboratory, Tech. Mem. No. 12, 1949 (unpublished)Google Scholar
  36. 36.
    Noltingk BE, Neppiras EA (1950) Cavitation produced by ultrasonics. Proc Phys Soc Lond, Sect B 63(9):674CrossRefGoogle Scholar
  37. 37.
    Louisnard O, Gomez F (2003) Growth by rectified diffusion of strongly acoustically forced gas bubbles in nearly saturated liquids. Phys Rev E 67:036610Google Scholar
  38. 38.
    Lauterborn W, Mettin R (1999) Nonlinear bubble dynamics—response curves and more. In: Crum LA, Mason TJ, Reisse JL, Suslick KS (eds) Sonochemistry and sonoluminescence; Proceedings of the NATO advanced study institute, Leavenworth (WA), USA, 18–29 Aug 1997. Kluwer Academic Publishers, Dordrecht, pp 63–72CrossRefGoogle Scholar
  39. 39.
    Franc J-P, Michel J-M (2006) Fundamentals of cavitation. Springer science & Business media, BerlinGoogle Scholar
  40. 40.
    Van Wijngaarden L (1972) One-dimensional flow of liquids containing small gas bubbles. Ann Rev Fluid Mech 4:369–394CrossRefGoogle Scholar
  41. 41.
    Caflisch RE, Miksis MJ, Papanicolaou GC, Ting L (1985) Effective equations for wave propagation in bubbly liquids. J Fluid Mech 153:259–273CrossRefGoogle Scholar
  42. 42.
    Commander KW, Prosperetti A (1989) Linear pressure waves in bubbly liquids: comparison between theory and experiments. J Acoust Soc Am 85:732–746CrossRefGoogle Scholar
  43. 43.
    Akhatov I, Parlitz U, Lauterborn W (1996) Towards a theory of self-organization phenomena in bubble-liquid mixtures. Phys Rev E 54:4990CrossRefGoogle Scholar
  44. 44.
    Louisnard O (2012) A simple model of ultrasound propagation in a cavitating liquid. Part I: theory, nonlinear attenuation and traveling wave generation. Ultrason Sonochem 19:56–65PubMedCrossRefGoogle Scholar
  45. 45.
    Louisnard O (2012) A simple model of ultrasound propagation in a cavitating liquid. Part II: primary Bjerknes force and bubble structures. Ultrason. Sonochem. 19:66–76PubMedCrossRefGoogle Scholar
  46. 46.
    Cairós C, Schneider J, Pflieger R, Mettin R (2014) Effects of argon sparging rate, ultrasonic power, and frequency on multibubble sonoluminescence spectra and bubble dynamics in NaCl aqueous solutions. Ultrason Sonochem 21:2044–2051PubMedCrossRefGoogle Scholar
  47. 47.
    Mettin R, Cairós C (2019) Leuchtende Blasen. Phys Unserer Zeit 50(1):38–42CrossRefGoogle Scholar
  48. 48.
    Taylor GI (1950) The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proc R Soc Lond A 201:192–196CrossRefGoogle Scholar
  49. 49.
    Plesset MS (1954) On the stability of fluid flows with spherical symmetry. J Appl Phys 25(1):96–98CrossRefGoogle Scholar
  50. 50.
    Birkhoff G (1954) Note on Taylor instability. Q Appl Math 12(3):306–309CrossRefGoogle Scholar
  51. 51.
    Birkhoff G (1956) Stability of spherical bubbles. Q Appl Math 13(4):451–453CrossRefGoogle Scholar
  52. 52.
    Plesset MS, Mitchell TP (1956) On the stability of the spherical shape of a vapor cavity in a liquid. Q Appl Math 13(4):419–430CrossRefGoogle Scholar
  53. 53.
    Strube HW (1971) Numerische Untersuchungen zur Stabilität nichtsphärisch schwingender Blasen. Acustica 25:289–303Google Scholar
  54. 54.
    Kornfeld M, Suvorov L (1944) On the destructive action of cavitation. J Appl Phys 15(6):495–506CrossRefGoogle Scholar
  55. 55.
    Hilgenfeldt S, Lohse D, Brenner MP (1996) Phase diagrams for sonoluminescing bubbles. Phys Fluids 8:2808CrossRefGoogle Scholar
  56. 56.
    Versluis M, Goertz DE, Palanchon P, Heitman IL, van der Meer SM, Dollet B, de Jong N, Lohse D (2010) Microbubble shape oscillations excited through ultrasonic parametric driving. Phys Rev E 82(2):026321CrossRefGoogle Scholar
  57. 57.
    Eller A, Flynn HG (1965) Rectified diffusion during nonlinear pulsations of cavitation bubbles. J Acoust Soc Am 37(3):493–503CrossRefGoogle Scholar
  58. 58.
    Fyrillas MM, Szeri AJ (1994) Dissolution or growth of soluble spherical oscillating bubbles. J Fluid Mech 277:381–407CrossRefGoogle Scholar
  59. 59.
    Bjerknes VFK (1906) Fields of force. Columbia University Press, New YorkGoogle Scholar
  60. 60.
    Matula TJ, Cordry AM, Roy RA, Crum LA (1997) Bjerknes force and bubble levitation under single-bubble sonoluminescence conditions. J Acoust Soc Am 102:1522–1527CrossRefGoogle Scholar
  61. 61.
    Akhatov I, Mettin R, Ohl C-D, Parlitz U, Lauterborn W (1997) Bjerknes force threshold for stable single bubble sonoluminescence. Phys Rev E 55:3747–3750CrossRefGoogle Scholar
  62. 62.
    Mettin R, Akhatov I, Parlitz U, Ohl CD, Lauterborn W (1997) Bjerknes forces between small cavitation bubbles in a strong acoustic field. Phys Rev E 56:2924–2931CrossRefGoogle Scholar
  63. 63.
    Crum LA (1975) Bjerknes forces on bubbles in a stationary sound field. J Acoust Soc Am 57(6):1363–1370CrossRefGoogle Scholar
  64. 64.
    Cairós C, Mettin R (2017) Simultaneous high-speed recording of sonoluminescence and bubble dynamics in multibubble fields. Phys Rev Lett 118(6):064301PubMedCrossRefGoogle Scholar
  65. 65.
    Levich VG (1962) Physicochemical hydrodynamics. Prentice-Hall, Englewood CliffsGoogle Scholar
  66. 66.
    Klyachko LS (1934) Heating and ventilation. USSR J Otopl I Ventil (4)Google Scholar
  67. 67.
    Magnaudet J, Legendre D (1998) The viscous drag force on a spherical bubble with a time-dependent radius. Phys Fluids 10(3):550–554CrossRefGoogle Scholar
  68. 68.
    Krefting D, Mettin R, Lauterborn W (2002) Kräfte in akustischen Kavitationsfeldern (Forces in acoustic cavitation fields). In Jekosch U (ed) Fortschritte der Akustik—DAGA 2002, Bochum. DEGA, Oldenburg, pp 260–261Google Scholar
  69. 69.
    Apfel RE (1981) Acoustic cavitation prediction. J Acoust Soc Am 69(6):1624–1633CrossRefGoogle Scholar
  70. 70.
    Church CC (1988) Prediction of rectified diffusion during nonlinear bubble pulsations at biomedical frequencies. J Acoust Soc Am 83(6):2210–2217PubMedCrossRefGoogle Scholar
  71. 71.
    Mettin R (2005) Bubble structures in acoustic cavitation. In: Doinikov AA (ed) Bubble and particle dynamics in acoustic fields: modern trends and applications. Research Signpost, Kerala, pp 1–36Google Scholar
  72. 72.
    Gaitan D, Crum LA, Church CC, Roy RA (1992) Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble. J Acoust Soc Am 91:3166–3183CrossRefGoogle Scholar
  73. 73.
    Hiller R, Putterman SJ, Barber BP (1992) Spectrum of synchronous picosecond sonoluminescence. Phys Rev Lett 69:1182PubMedCrossRefGoogle Scholar
  74. 74.
    Barber BP, Hiller RA, Löfstedt R, Putterman SJ, Weninger KR (1997) Defining the unknowns of sonoluminescence. Phys Rep 281:65–143CrossRefGoogle Scholar
  75. 75.
    Crum LA (2015) Resource paper: sonoluminescence. J Acoust Soc Am 138:2181–2205PubMedCrossRefGoogle Scholar
  76. 76.
    Gompf B, Günther R, Nick G, Pecha R, Eisenmenger W (1997) Resolving sonoluminescence pulse width with time-correlated single photon counting. Phys Rev Lett 79:1405CrossRefGoogle Scholar
  77. 77.
    Chen W, Huang W, Liang Y, Gao X, Cui W (2008) Time-resolved spectra of single-bubble sonoluminescence in sulfuric acid with a streak camera. Phys Rev E 78(3):035301CrossRefGoogle Scholar
  78. 78.
    Hiller R, Weninger K, Putterman SJ, Barber BP (1994) Effect of noble gas doping in single-bubble sonoluminescence. Science 266(5183):248–250PubMedCrossRefGoogle Scholar
  79. 79.
    Schneider J, Pflieger R, Nikitenko SI, Shchukin D, Möhwald H (2010) Line emission of sodium and hydroxyl radicals in single-bubble sonoluminescence. J Phys Chem A 115(2):136–140PubMedCrossRefGoogle Scholar
  80. 80.
    Flannigan DJ, Suslick KS (2005) Plasma line emission during single-bubble cavitation. Phys Rev Lett 95:044301PubMedCrossRefGoogle Scholar
  81. 81.
    Flannigan DJ, Suslick KS (2005) Plasma formation and temperature measurement during single-bubble cavitation. Nature 434(7029):52PubMedCrossRefGoogle Scholar
  82. 82.
    Lepoint T, Lepoint-Mullie F, Henglein A (1999) Single bubble sonochemistry. In: Crum LA et al (eds) Sonochemistry and sonoluminescence. Kluwer Academic Publishers, Dordrecht, pp 285–290CrossRefGoogle Scholar
  83. 83.
    Verraes T, Lepoint-Mullie F, Lepoint T, Longuet-Higgins M (2000) Experimental study of the liquid flow near a single sonoluminescent bubble. J Acoust Soc Am 108:117PubMedCrossRefGoogle Scholar
  84. 84.
    Troia A, Madonna Ripa D, Lago S, Spagnolo R (2004) Evidence for liquid phase reactions during single bubble acoustic cavitation. Ultrason Sonochem 11:317PubMedCrossRefGoogle Scholar
  85. 85.
    Didenko YT, Suslick KS (2002) The energy efficiency of formation of photons, radicals and ions during single-bubble cavitation. Nature 418(6896):394PubMedCrossRefGoogle Scholar
  86. 86.
    Mettin R, Lindinger B, Lauterborn W (2002) Bjerknes-Instabilität levitierter Einzelblasen bei geringem statischen Druck (Bjerknes-instability of levitated single bubbles at low static pressure). In: Jekosch U (ed) Fortschritte der Akustik—DAGA 2002, Bochum. DEGA, Oldenburg, pp 264–265Google Scholar
  87. 87.
    Rosselló JM, Dellavale D, Bonetto FJ (2013) Energy concentration and positional stability of sonoluminescent bubbles in sulfuric acid for different static pressures. Phys Rev E 88:033026CrossRefGoogle Scholar
  88. 88.
    Matula TJ, Roy RA, Mourad PD, McNamara WB III, Suslick KS (1995) Comparison of multibubble and single-bubble sonoluminescence spectra. Phys Rev Lett 75:2602PubMedCrossRefGoogle Scholar
  89. 89.
    Benjamin TB, Ellis AT (1966) The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries. Phil Trans Roy Soc Lond A 260:221–240CrossRefGoogle Scholar
  90. 90.
    Calvisi M, Lindau O, Blake JR, Szeri AJ (2007) Shape stability and violent collapse of microbubbles in acoustic traveling waves. Phys Fluids 19:047101CrossRefGoogle Scholar
  91. 91.
    Vuong VQ, Szeri AJ, Young DA (1999) Shock formation within sonoluminescence bubbles. Phys Fluids 11:10–17CrossRefGoogle Scholar
  92. 92.
    Schanz D, Metten B, Kurz T, Lauterborn W (2012) Molecular dynamics simulations of cavitation bubble collapse and sonoluminescence. New J Phys 14:113019CrossRefGoogle Scholar
  93. 93.
    Xu H, Eddingsaas NC, Suslick KS (2009) Spatial separation of cavitating bubble populations: the nanodroplet injection model. J Am Chem Soc 131:6060–6061PubMedCrossRefGoogle Scholar
  94. 94.
    Xu H, Glumac NG, Suslick KS (2010) Temperature inhomogeneity during multibubble sonoluminescence. Angew. Chemie 122(6):1097–1100CrossRefGoogle Scholar
  95. 95.
    Lechner C, Koch M, Lauterborn W, Mettin R (2017) Pressure and tension waves from bubble collapse near a solid boundary: a numerical approach. J Acoust Soc Am 142(6):3649–3659PubMedCrossRefGoogle Scholar
  96. 96.
    Blake JR, Hooton MC, Robinson PB, Tong RP (1997) Collapsing cavities, toroidal bubbles and jet impact. Phil Trans Roy Soc Lond A 355:537–550CrossRefGoogle Scholar
  97. 97.
    Reuter F, Gonzalez-Avila SR, Mettin R, Ohl C-D (2017) Flow fields and vortex dynamics of bubbles collapsing near a solid boundary. Phys Rev Fluids 2:064202CrossRefGoogle Scholar
  98. 98.
    Reuter F, Mettin R (2018) Electrochemical wall shear rate microscopy of collapsing bubbles. Phys Rev Fluids 3:063601CrossRefGoogle Scholar
  99. 99.
    Plesset MS, Chapman RB (1971) Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary. J Fluid Mech 47(2):283–290CrossRefGoogle Scholar
  100. 100.
    Lauterborn W, Bolle H (1975) Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary. J Fluid Mech 72(2):391–399CrossRefGoogle Scholar
  101. 101.
    Philipp A, Lauterborn W (1998) Cavitation erosion by single laser-produced bubbles. J Fluid Mech 361:75–116CrossRefGoogle Scholar
  102. 102.
    Krefting D, Mettin R, Lauterborn W (2004) High-speed observation of acoustic cavitation erosion in multibubble systems. Ultrason Sonochem 11:119–123PubMedCrossRefGoogle Scholar
  103. 103.
    Fuchs FJ (2015) Ultrasonic cleaning and washing of surfaces. In: Gallego-Juárez JA, Graff KF (eds) Power ultrasonics. Elsevier, pp 577–610Google Scholar
  104. 104.
    Mason TJ (2016) Ultrasonic cleaning: an historical perspective. Ultrason Sonochem 29:519–523PubMedCrossRefGoogle Scholar
  105. 105.
    Reuter F, Mettin R (2016) Mechanisms of single bubble cleaning. Ultrason Sonochem 29:550–562PubMedCrossRefGoogle Scholar
  106. 106.
    Blake JR, Keen GS, Tong RP, Wilson M (1999) Acoustic cavitation: the fluid dynamics of non–spherical bubbles. Phil Trans R Soc Lond A 357:251CrossRefGoogle Scholar
  107. 107.
    Pearson A, Blake JR, Otto SR (2004) Jets in bubbles. J Eng Math 48:391–412CrossRefGoogle Scholar
  108. 108.
    Lauterborn W, Lechner C, Koch M, Mettin R (2018) Bubble models and real bubbles: Rayleigh and energy-deposit cases in a Tait-compressible liquid. IMA J. Appl. Math 83(4):556–589CrossRefGoogle Scholar
  109. 109.
    Supponen O, Obreschkow D, Tinguely M, Kobel P, Dorsaz N, Farhat M (2016) Scaling laws for jets of single cavitation bubbles. J Fluid Mech 802:263–293CrossRefGoogle Scholar
  110. 110.
    Brujan EA, Noda T, Ishigami A, Ogasawara T, Takahira H (2018) Dynamics of laser-induced cavitation bubbles near two perpendicular rigid walls. J Fluid Mech 841:28–49CrossRefGoogle Scholar
  111. 111.
    Ohl SW, Ohl CD (2016) Acoustic cavitation in a microchannel. In: Ashokkumar M et al (eds) Handbook of ultrasonics and sonochemistry. Springer Science + Business Media, Singapore, pp 99–135CrossRefGoogle Scholar
  112. 112.
    Koch M, Lechner Ch, Reuter F, Köhler K, Mettin R, Lauterborn W (2016) Numerical modeling of laser generated cavitation bubbles with the finite volume and volume of fluid method, using OpenFOAM. Comput Fluids 126:71–90CrossRefGoogle Scholar
  113. 113.
    Lindau O, Lauterborn W (2003) Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall. J Fluid Mech 479:327–348CrossRefGoogle Scholar
  114. 114.
    Falkovich G (2011) Fluid mechanics, a short course for physicists. Cambridge University PressGoogle Scholar
  115. 115.
    Blake JR, Leppinen DM, Wang Q (2015) Cavitation and bubble dynamics: the Kelvin impulse and its applications. Interface Focus 5(5):20150017PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Wang QX, Blake JR (2010) Non-spherical bubble dynamics in a compressible liquid. Part 1. Travelling acoustic wave. J Fluid Mech 659:191–224CrossRefGoogle Scholar
  117. 117.
    Nowak T, Mettin R (2014) Unsteady translation and repetitive jetting of acoustic cavitation bubbles. Phys Rev E 90:033016CrossRefGoogle Scholar
  118. 118.
    Hatanaka S, Hayashi S, Choi P-K (2010) Sonoluminescence of alkali-metal atoms in sulfuric acid: comparison with that in water. Jpn J Appl Phys 49:07HE01CrossRefGoogle Scholar
  119. 119.
    Yasui K (2018) Acoustic cavitation and bubble dynamics. Springer Briefs in Molecular Science—Ultrasound and Sonochemistry, Springer International PublishingGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rachel Pflieger
    • 1
    Email author
  • Sergey I. Nikitenko
    • 1
  • Carlos Cairós
    • 2
  • Robert Mettin
    • 3
  1. 1.Marcoule Institute for Separation Chemistry, ICSM UMR5257, CEA, CNRSUniversity of Montpellier, ENSCMBagnols-sur-Cèze CedexFrance
  2. 2.Department of Analytical ChemistryUniversity of La LagunaLa Laguna, TenerifeSpain
  3. 3.Third Institute of PhysicsGeorg-August-University GöttingenGöttingenGermany

Personalised recommendations