Advertisement

New Strategies in Modeling Electronic Structures and Properties with Applications to Actinides

  • Aleksandra Leszczyk
  • Paweł Tecmer
  • Katharina BoguslawskiEmail author
Chapter
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 29)

Abstract

This chapter discusses contemporary quantum chemical methods and provides general insights into modern electronic structure theory with a focus on heavy-element-containing compounds. We first give a short overview of relativistic Hamiltonians that are frequently applied to account for relativistic effects. Then, we scrutinize various quantum chemistry methods that approximate the N-electron wave function. In this respect, we will review the most popular single- and multi-reference approaches that have been developed to model the multi-reference nature of heavy element compounds and their ground- and excited-state electronic structures. Specifically, we introduce various flavors of post-Hartree–Fock methods and optimization schemes like the complete active space self-consistent field method, the configuration interaction approach, the Fock-space coupled cluster model, the pair-coupled cluster doubles ansatz, also known as the antisymmetric product of 1 reference orbital geminal, and the density matrix renormalization group algorithm. Furthermore, we will illustrate how concepts of quantum information theory provide us with a qualitative understanding of complex electronic structures using the picture of interacting orbitals. While modern quantum chemistry facilitates a quantitative description of atoms and molecules as well as their properties, concepts of quantum information theory offer new strategies for a qualitative interpretation that can shed new light onto the chemistry of complex molecular compounds.

Keywords

Actinides Strong correlation Geminals Coupled cluster theory Excited states Relativistic effects 

Notes

Acknowledgements

A. Ł. and K. B. acknowledge financial support from the National Science Centre, Poland (SONATA BIS 5 Grant No. 2015/18/E/ST4/00584). K. B. gratefully acknowledges funding from a Marie-Skłodowska-Curie Individual Fellowship project no. 702635–PCCDX and a scholarship for outstanding young scientists from the Ministry of Science and Higher Education. P. T. thanks the POLONEZ fellowship program of the National Science Center, Poland, No. 2015/19/P/ST4/02480. Open image in new window This project had received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska–Curie grant agreement No. 665778.

References

  1. 1.
    Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. Phys Rev Lett 110:6158–6170Google Scholar
  2. 2.
    Almond PM, Skanthakumar S, Soderholm L, Burns PC (2007) Cation-cation interactions and antiferromagnetism in Na[Np(V)O\(_2\)(OH)\(_2\)]: synthesis, structure, and magnetic properties. Chem Mater 19:280–285CrossRefGoogle Scholar
  3. 3.
    Andersson K, Malmqvist PÅ, Roos BO, Sadlej AJ, Woliński K (1990) Second-order perturbation theory with a CASSCF reference function. J Phys Chem 94:5483–5488CrossRefGoogle Scholar
  4. 4.
    Andersson K, Malmqvist PÅ, Roos BO (1992) Second-order perturbation theory with a complete active space self-consistent field reference function. J Chem Phys 96:1218–1226CrossRefGoogle Scholar
  5. 5.
    Arnold PL, Love JB, Patel D (2009) Pentavalent uranyl complexes. Coord Chem Rev 253:1973–1978CrossRefGoogle Scholar
  6. 6.
    Autschbach J, Siekierski S, Seth M, Schwerdtfeger P, Schwarz WHE (2002) Dependence of relativistic effects on electronic configuration in the neutral atoms of d- and f-block elements. J Comput Chem 23:804–813PubMedCrossRefGoogle Scholar
  7. 7.
    Barcza G, Legeza Ö, Marti KH, Reiher M (2011) Quantum-information analysis of electronic states of different molecular structures. Phys Rev A 83:012508CrossRefGoogle Scholar
  8. 8.
    Barcza G, Noack R, Sólyom J, Legeza Ö (2014) Entanglement patterns and generalized correlation functions in quantum many-body systems. Phys Rev B 92:125140CrossRefGoogle Scholar
  9. 9.
    Barysz M (2003) Two-component methods. In: Kaldor U, Wilson S (eds) Theoretical chemistry and physics of heavy and superheavy elements. Springer, pp 349–397. Chapter 9Google Scholar
  10. 10.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–4000CrossRefGoogle Scholar
  11. 11.
    Boguslawski K (2016) Targeting excited states in all-trans polyenes with electron-pair states. J Chem Phys 145:234105PubMedCrossRefGoogle Scholar
  12. 12.
    Boguslawski K (2017) Erratum: “targeting excited states in all-trans polyenes with electron-pair states”. J Chem Phys 147(13):139901PubMedCrossRefGoogle Scholar
  13. 13.
    Boguslawski K, Ayers PW (2015) Linearized coupled cluster correction on the antisymmetric product of 1-reference orbital geminals. J Chem Theory Comput 11:5252–5261PubMedCrossRefGoogle Scholar
  14. 14.
    Boguslawski K, Reiher M (2014) Chemical bonding in open-shell transition-metal complexes. In: Frenking G, Shaik S (eds) The chemical bond: Chemical bonding across the periodic table, 1st edn. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, chap 8, pp 219–252Google Scholar
  15. 15.
    Boguslawski K, Tecmer P (2015) Orbital entanglement in quantum chemistry. Int J Quantum Chem 115:1289–1295CrossRefGoogle Scholar
  16. 16.
    Boguslawski K, Tecmer P (2017) Erratum: orbital entanglement in quantum chemistry. Int J Quantum Chem 117:e25455CrossRefGoogle Scholar
  17. 17.
    Boguslawski K, Tecmer P, Legeza Ö, Reiher M (2012) Entanglement measures for single- and multireference correlation effects. J Phys Chem Lett 3:3129–3135PubMedCrossRefGoogle Scholar
  18. 18.
    Boguslawski K, Tecmer P, Barcza G, Legeza Ö, Reiher M (2013) Orbital entanglement in bond-formation processes. J Chem Theory Comput 9:2959–2973PubMedCrossRefGoogle Scholar
  19. 19.
    Boguslawski K, Tecmer P, Ayers PW, Bultinck P, de Baerdemacker S, van Neck D (2014a) Efficient description of strongly correlated electrons with mean-field cost. Phys Rev B 89:201106CrossRefGoogle Scholar
  20. 20.
    Boguslawski K, Tecmer P, Limacher PA, Johnson PA, Ayers PW, Bultinck P, de Baerdemacker S, van Neck D (2014b) Nonvariational orbital optimization techniques for the AP1roG wave function. J Chem Theory Comput 10:4873–4882PubMedCrossRefGoogle Scholar
  21. 21.
    Boguslawski K, Tecmer P, Limacher PA, Johnson PA, Ayers PW, Bultinck P, de Baerdemacker S, van Neck D (2014c) Projected seniority-two orbital optimization of the antisymmetric product of one-reference orbital geminal. J Chem Phys 140:214114PubMedCrossRefGoogle Scholar
  22. 22.
    Boguslawski K, Réal F, Tecmer P, Duperrouzel C, Gomes ASP, Legeza Ö, Ayers PW, Vallet V (2017) On the multi-reference nature of plutonium oxides: PuO\(_2^{2+}\), PuO\(_2\), PuO\(_3\), and PuO\(_2\)(OH)\(_2\). Phys Chem Chem Phys 19:4317–4329PubMedCrossRefGoogle Scholar
  23. 23.
    Breit G (1929) The effect of retardation on the interaction of two electrons. Phys Rev 34:553–573CrossRefGoogle Scholar
  24. 24.
    Bytautas L, Henderson TM, Jiménez-Hoyos CA, Ellis JK, Scuseria GE (2011) Seniority and orbital symmetry as tools for establishing a full configuration interaction hierarchy. J Chem Phys 135:044119PubMedCrossRefGoogle Scholar
  25. 25.
    Chan GKL, Sharma S (2011) The density matrix renormalization group in quantum chemistry. Annu Rev Phys Chem 62:465–481PubMedCrossRefGoogle Scholar
  26. 26.
    Chang C, Pelissier M, Durand P (1986) Regular two-component Pauli-like effective hamiltonians in Dirac theory. Phys Scr 34:394–404CrossRefGoogle Scholar
  27. 27.
    Chatterjee K, Pastorczak E, Jawulski K, Pernal K (2016) A minimalistic approach to static and dynamic electron correlations: amending generalized valence bond method with extended random phase approximation correlation correction. J Chem Phys 113:2960–2963Google Scholar
  28. 28.
    Choppin GR, Rao LF (1984) Complexation of pentavalent and hexavalent actinides by fluoride. Radiochim Acta 37:143–146CrossRefGoogle Scholar
  29. 29.
    Cohen AJ, Mori-Sánchez P, Yang W (2012) Challenges for density functional theory. Chem Rev 112:289–320PubMedCrossRefGoogle Scholar
  30. 30.
    Coleman AJ (1965) Structure of fermion density matrices. II. Antisymmetrized geminal powers. J Math Phys 6:1425–1431CrossRefGoogle Scholar
  31. 31.
    Cremer D (2001) Density functional theory: coverage of dynamic and non-dynamic electron correlation effects. Mol Phys 99:1899–1940CrossRefGoogle Scholar
  32. 32.
    de Jong WA, Visscher L, Nieuwpoort WC (1999) On the bonding and the electric field gradient of the uranyl ion. J Mol Struct (Theochem) 458:41–52CrossRefGoogle Scholar
  33. 33.
    Denning RG (1992) Electronic structure and bonding in actinyl ions, vol 79. Springer, Berlin, Heidelberg, pp 313–336Google Scholar
  34. 34.
    Denning RG (2007) Electronic structure and bonding in actinyl ions and their analogs. J Phys Chem A 111:4125–4143PubMedCrossRefGoogle Scholar
  35. 35.
    Dirac PAM (1928) The quantum theory of the electron. Proc Roy Soc Lond A 117:610–624CrossRefGoogle Scholar
  36. 36.
    Diwu J, Wang S, Albrecht-Schmitt TE (2012) Periodic trends in hexanuclear actinide clusters. Inorg Chem 51:4088–4093PubMedCrossRefGoogle Scholar
  37. 37.
    Dolg M, Cao X (2012) Relativistic pseudopotentials: their development and scope of applications. Chem Rev 112:403–480PubMedCrossRefGoogle Scholar
  38. 38.
    Douglas N, Kroll NM (1974) Quantum electrodynamical corrections to fine-structure of helium. Ann Phys 82:89–155CrossRefGoogle Scholar
  39. 39.
    Duperrouzel C, Tecmer P, Boguslawski K, Barcza G, Legeza Ö, Ayers PW (2015) A quantum informational approach for dissecting chemical reactions. Chem Phys Lett 621:160–164CrossRefGoogle Scholar
  40. 40.
    Foldy LL, Wouthuysen SA (1950) On the Dirac theory of spin 1/2 particles and its non-relativistic limit. Phys Rev 78:29–36CrossRefGoogle Scholar
  41. 41.
    Forbes TZ, Burns PC, Soderholm L, Skanthakumar S (2006) Crystal structures and magnetic properties of NaK\(_3\)(NpO\(_2\))\(_4\)(SO\(_4\))\(_4\)(H\(_2\)O)\(_2\) and NaNpO\(_2\)SO\(_4\)H\(_2\)O: cation-cation interactions in a neptunyl sulfate framework. Chem Mater 18:1643–1649CrossRefGoogle Scholar
  42. 42.
    Fortier S, Hayton TW (2010) Oxo ligand functionalization in the uranyl ion (UO\(_2^{2+}\)). Coord Chem Rev 254:197CrossRefGoogle Scholar
  43. 43.
    Gainar I, Sykes KW (1964) The spectra and stability of some neptunium complex ions in water and methanol. J Chem Soc 9:4452–4459CrossRefGoogle Scholar
  44. 44.
    Garza AJ, Bulik IW, Henderson TM, Scuseria GE (2015a) Range separated hybrids of pair coupled cluster doubles and density functionals. Phys Chem Chem Phys 17:22412–22422PubMedCrossRefGoogle Scholar
  45. 45.
    Garza AJ, Bulik IW, Henderson TM, Scuseria GE (2015b) Synergy between pair coupled cluster doubles and pair density functional theory. J Chem Phys 142:044109PubMedCrossRefGoogle Scholar
  46. 46.
    Garza AJ, Sousa Alencar AG, Scuseria GE (2015c) Actinide chemistry using singlet-paired coupled cluster and its combinations with density functionals. J Chem Phys 143:244106PubMedCrossRefGoogle Scholar
  47. 47.
    Garza AJ, Bulik IW, Alencar AGS, Sun J, Perdew JP, Scuseria GE (2016) Combinations of coupled cluster, density functionals, and the random phase approximation for describing static and dynamic correlation, and van der Waals interactions. Mol Phys 114:997–1018CrossRefGoogle Scholar
  48. 48.
    Gaunt JA (1929) The triplets of helium. Proc Roy Soc Lond A 122:513–532CrossRefGoogle Scholar
  49. 49.
    Goddard WA, Dunning TH Jr, Hunt WJ, Hay PJ (1973) Generalized valence bond description of bonding in low-lying states of molecules. Acc Chem Res 6:368–376CrossRefGoogle Scholar
  50. 50.
    Gomes ASP, Jacob CR, Visscher L (2008) Calculation of local excitations in large systems by embedding wave-function theory in density-functional theory. Phys Chem Chem Phys 10:5353–5362PubMedCrossRefGoogle Scholar
  51. 51.
    Gomes ASP, Jacob CR, Réal F, Visscher L, Vallet V (2013) Towards systematically improvable models for actinides in condensed phase: the electronic spectrum of uranyl in Cs\(_2\)UO\(_2\)Cl\(_4\) as a test case. Phys Chem Chem Phys 15:15153–15162PubMedCrossRefGoogle Scholar
  52. 52.
    Goncharov V, Han J, Kaledin LA, Heaven MC (2005) Ionization energy measurements and electronic spectra for ThO. J Chem Phys 122:204311PubMedCrossRefGoogle Scholar
  53. 53.
    Goncharov V, Kaledin LA, Heaven MC (2006) Probing the electronic structure of UO\(^+\) with high-resolution photoelectron spectroscopy. J Phys Chem 125:133202CrossRefGoogle Scholar
  54. 54.
    Guillaume B, Hobart DE, Bourges JY (1981) “Cation-cation” complexes of pentavalent actinides—II Spectrophotometric study of complexes of americium(V) with uranyl(VI) and neptunyl(VI) ions in aqueous perchlorate solution. J Inorg Nucl Chem 43:3295–3299CrossRefGoogle Scholar
  55. 55.
    Häller LJL, Kaltsoyannis N, Sarsfield MJ, May I, Cornet SM, Redmond MP, Helliwell M (2007) A structural and theoretical investigation of equatorial cis and trans uranyl phosphinimine and uranyl phosphine oxide complexes UO\(_2\)Cl\(_2\)(Cy\(_3\)PNH)\(_2\) and UO\(_2\)Cl\(_2\)(Cy\(_3\)PO)\(_2\). Inorg Chem 46:4868–4875PubMedCrossRefGoogle Scholar
  56. 56.
    Halperin J, Oliver JH (1983) Sulfate complexation of neptunium(V) in aqueous solution. Radiochim Acta 33:29–33CrossRefGoogle Scholar
  57. 57.
    Hay PJ, Hunt WJ, Goddard WA (1972) Generalized valence bond wavefunctions for the low lying states of methylene. Chem Phys Lett 13:30–35CrossRefGoogle Scholar
  58. 58.
    Hayton TW (2013) Uranium chemistry: an actinide milestone. Nat Chem 5:451–452PubMedCrossRefGoogle Scholar
  59. 59.
    Hégely B, Nagy PR, Ferenczy GG, Kállay M (2016) Exact density functional and wave function embedding schemes based on orbital localization. J Chem Phys 145(6):064107CrossRefGoogle Scholar
  60. 60.
    Helgaker T, Jørgensen P, Olsen J (2000) Molecular electronic-structure theory. Wiley, New YorkCrossRefGoogle Scholar
  61. 61.
    Hess BA (1986) Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. Phys Rev A 33:3742–3748CrossRefGoogle Scholar
  62. 62.
    Hess BA, Marian CM, Wahlgren U, Gropen O (1996) A mean-field spin-orbit method applicable to correlated wavefunctions. Chem Phys Lett 251:365–371CrossRefGoogle Scholar
  63. 63.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871CrossRefGoogle Scholar
  64. 64.
    Hurley AC, Lennard-Jones J, Pople JA (1953) The molecular orbital theory of chemical valency XIV. Paired electrons in the presence of two unlike attracting centres. Proc R Soc Lond Ser A 220:446–455CrossRefGoogle Scholar
  65. 65.
    Ilias̆ M, Saue T (2007) An infinite-order two-component relativistic Hamiltonian by a simple one-step transformation. J Chem Phys 126:064102Google Scholar
  66. 66.
    Infante I, Gomes ASP, Visscher L (2006) On the performance of the intermediate Hamiltonian Fock-space coupled-cluster method on linear triatomic molecules: the electronic spectra of NpO\(_2^+\), NpO\(_2^{2+}\), and PuO\(_2^{2+}\). J Chem Phys 125:074301PubMedCrossRefGoogle Scholar
  67. 67.
    Ingram KIM, Kaltsoyannis N, Gaunt AJ, Neu MP (2007) Covalency in the f-element-chalcogen bond computational studies of [M(N(EPH\(_2\))\(_2\))\(_3\)] (M = La, U, Pu; E = O, S, Se, Te). J Alloys Compd 444–445:369–375CrossRefGoogle Scholar
  68. 68.
    Ingram KIM, Tassell MJ, Gaunt AJ, Kaltsoyannis N (2008) Covalency in the f element-chalcogen bond. Computational studies of M[N(EPR\(_2\))\(_2\)]\(_3\) (M = La, Ce, Pr, Pm, Eu, U, Np, Pu, Am, Cm; E = O, S, Se, Te; R = H, (i)Pr, Ph). Inorg Chem 47:7824–7833PubMedCrossRefGoogle Scholar
  69. 69.
    Jackson VE, Craciun R, Dixon DA, Peterson K, de Jong WB (2008) Prediction of Vibrational Frequencies of UO\(_2^{2+}\) at the CCSD(T) Level. J Phys Chem A 112:4095–4099Google Scholar
  70. 70.
    Jeszenszki P, Nagy PR, Zoboki T, Szabados A, Surján PR (2014) Perspectives of APSG-based multireference perturbation theories. Int J Quantum Chem 114:1048–1052CrossRefGoogle Scholar
  71. 71.
    Jin GB, Skanthakumar S, Soderholm L (2011a) Cation-cation interactions: crystal structures of neptunyl(V) selenate hydrates, (NpO\(_2\))\(_2\)(SeO\(_4\))(H\(_2\)O)\(_n\) (\(n\) = 1, 2, and 4). Inorg Chem 50:5203–5214PubMedCrossRefGoogle Scholar
  72. 72.
    Jin GB, Skanthakumar S, Soderholm L (2011b) Two new neptunyl(V) selenites: a novel cation-cation interaction framework in (NpO\(_2\))\(_3\)(OH)(SeO\(_3\))(H\(_2\)O)\(_2\cdot \)H\(_2\)O and a uranophane-type sheet in Na(NpO\(_2\))(SeO\(_3\))(H\(_2\)O). Inorg Chem 50:6297–6303PubMedCrossRefGoogle Scholar
  73. 73.
    Johnson PA, Ayers PW, Limacher PA, de Baerdemacker S, van Neck D, Bultinck P (2013) A size-consistent approach to strongly correlated systems using a generalized antisymmetrized product of nonorthogonal geminals. J Chem Theor Comput 1003:101–113CrossRefGoogle Scholar
  74. 74.
    Keller S, Boguslawski K, Janowski T, Reiher M, Pulay P (2015) Selection of active spaces for multiconfigurational wavefunctions. J Chem Phys 142:244104PubMedCrossRefGoogle Scholar
  75. 75.
    Kędziera D (2006) Solving of the infinite-order two-component method equations. In: Recent progess in computational sciences and engineering, VSP BV-C/O BRILL ACAD PUBL, Leiden, The Netherlands, Lecture series on computer and computational sciences, vol 7A–B, pp 252–255Google Scholar
  76. 76.
    Kędziera D, Barysz M (2007) Non-iterative approach to the infinite-order two-component (IOTC) relativistic theory and the non-symmetric algebraic Riccati equation. Chem Phys Lett 446:176–181Google Scholar
  77. 77.
    Knecht S, Keller S, Autschbach J, Reiher M (2016) A nonorthogonal state-interaction approach for matrix product state wave functions. J Chem Theory Comput 12:5881–5894PubMedCrossRefGoogle Scholar
  78. 78.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138CrossRefGoogle Scholar
  79. 79.
    Kovács A, Konings RJM, Raab J, Gagliardi L (2008) A theoretical study of AmO\(_n\) and CmO\(_n\) (n = 1, 2). Phys Chem Chem Phys 10:1114–1117PubMedCrossRefGoogle Scholar
  80. 80.
    Krylov AI (2006) Spin-flip equation-of-motion coupled-cluster electronic structure method for a description of excited states, bond breaking, diradicals, and triradicals. Acc Chem Res 39:83–91PubMedCrossRefGoogle Scholar
  81. 81.
    Kümmel S, Kronik L (2008) Orbital-dependent density functionals: theory and applications. Rev Mod Phys 80:3–60CrossRefGoogle Scholar
  82. 82.
    Kurashige Y, Yanai T (2011) Second-order perturbation theory with density matrix renormalization group self-consistent field reference function: theory and application to the study of chromium dimer. J Chem Phys 135:094104PubMedCrossRefGoogle Scholar
  83. 83.
    Kutepov AL (2007) The effect of exact calculation of exchange interaction upon calculated electronic structure of actinides. J Alloys Compd 444–445:174–176CrossRefGoogle Scholar
  84. 84.
    Kutzelnigg W (1964) Direct determination of natural orbitals and natural expansion coefficients of many-electron wavefunctions. I. Natural orbitals in the geminal product spproximation. J Chem Phys 40:3640–3647CrossRefGoogle Scholar
  85. 85.
    Kutzelnigg W (1965) On the validity of the electron pair approximation for the beryllium ground state. Theor Chim Acta 3:241–253CrossRefGoogle Scholar
  86. 86.
    Łachmanska A, Tecmer P, Legeza Ö, Boguslawski K (2018) Elucidating cation–cation interactions in neptunyl dications using multireference ab initio theory. Phys Chem Chem Phys 21:744–759Google Scholar
  87. 87.
    Langhoff SR, Davidson ER (1974) Configuration interaction calculations on the nitrogen molecule. Int J Quantum Chem 8:61–72CrossRefGoogle Scholar
  88. 88.
    Lawler KV, Beran GJO, Head-Gordon M (2008) Symmetry breaking in benzene and larger aromatic molecules within generalized valence bond coupled cluster methods. J Chem Phys 128:024107PubMedCrossRefGoogle Scholar
  89. 89.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  90. 90.
    Legeza Ö, Sólyom J (2003) Optimizing the density-matrix renormalization group method using quantum information entropy. Phys Rev B 68:195116CrossRefGoogle Scholar
  91. 91.
    Legeza Ö, Noack R, Sólyomand J, Tincani L (2005) Applications of quantum information in the density-matrix renormalization group. In: Fehske H, Schneider R, Weiße A (eds) Computational many-particle physics. Springer, Berlin/Heidelberg, chap 24, pp 653–664Google Scholar
  92. 92.
    Legeza Ö, Barcza G, Noack RM, Sólyom J (2013) Entanglement topology of strongly correlated systems. Korrelationstage MPIPKS, DresdenGoogle Scholar
  93. 93.
    Li J, Bursten BE, Liang B, Andrews L (2002) Noble gas-actinide compounds: complexation of the CUO molecule by Ar, Kr, and Xe atoms in noble gas matrices. Science 295:2242–2245PubMedCrossRefGoogle Scholar
  94. 94.
    Liang B, Andrews L, Li J, Bursten BE (2002) Noble gas-actinide compounds: evidence for the formation of distinct CUO(Ar)\(_{4-n}\)(Xe)\(_n\) and CUO(Ar)\(_{4-n}\)(Xe)\(_n\) (n = 1, 2, 3, 4) complexes. J Am Chem Soc 124:9016–9017PubMedCrossRefGoogle Scholar
  95. 95.
    Limacher P, Ayers P, Johnson P, de Baerdemacker S, van Neck D, Bultinck P (2014) Simple and inexpensive perturbative correction schemes for antisymmetric products of nonorthogonal geminals. Phys Chem Chem Phys 16:5061–5065PubMedCrossRefGoogle Scholar
  96. 96.
    Limacher PA, Ayers PW, Johnson PA, de Baerdemacker S, van Neck D, Bultinck P (2013) A new mean-field method suitable for strongly correlated electrons: computationally facile antisymmetric products of nonorthogonal geminals. J Chem Theor Comput 9:1394–1401CrossRefGoogle Scholar
  97. 97.
    Malmqvist PÅ, Roos BO, Schimmelpfennig B (2002) The restricted active space (RAS) state interaction approach with spin-orbit coupling. Chem Phys Lett 357:230–240CrossRefGoogle Scholar
  98. 98.
    Marian CM, Wahlgren U (1996) A new mean-field and ECP-based spin-orbit method. Applications to Pt and PtH. Chem Phys Lett 251:357–364CrossRefGoogle Scholar
  99. 99.
    Marti KH, Reiher M (2010) The density matrix renormalization group algorithm in quantum chemistry. Z Phys Chem 224:583–599CrossRefGoogle Scholar
  100. 100.
    Matsika S, Zhang Z, Brozell SR, Bladeau JP, Pitzer RM (2001) Electronic structure and spectra of actinyl ions. J Phys Chem A 105:3825–3828CrossRefGoogle Scholar
  101. 101.
    Meissner L, Musiał M (2010) Intermediate Hamiltonian formulations of the Fock-space coupled-cluster method: details, comparisons, examples. In: Recent progress in coupled cluster methods. Springer, p 395Google Scholar
  102. 102.
    Mikheev NB, Kulyukhin SA, Melikhov IV (2007) Lanthanides and actinides among other groups of elements of the periodic table. Radioch 49:449–463CrossRefGoogle Scholar
  103. 103.
    Mottet M, Tecmer P, Boguslawski K, Legeza Ö, Reiher M (2014) Quantum entanglement in carbon-carbon, carbon-phosphorus, and silicon-silicon bonds. Phys Chem Chem Phys 16:8872–8880PubMedCrossRefGoogle Scholar
  104. 104.
    Murg V, Verstraete F, Schneider R, Nagy PR, Legeza O (2015) Tree tensor network state with variable tensor order: an efficient multireference method for strongly correlated systems. J Chem Theory Comput 11:1027–1036PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Musiał M, Bartlett RJ (2011) Multi-reference fock space coupled-cluster method in the intermediate hamiltonian formulation for potential energy surfaces. J Chem Phys 135(4):044121PubMedCrossRefGoogle Scholar
  106. 106.
    Neuscamman E, Yanai T, Chan GKL (2010) A review of canonical transformation theory. Int Rev Phys Chem 29:231–271CrossRefGoogle Scholar
  107. 107.
    Parks JM, Parr RG (1958) Theory of separated electron pairs. J Chem Phys 28:335–345CrossRefGoogle Scholar
  108. 108.
    Parr RG, Ellison FO, Lykos PG (1956) Generalized antisymmetrized product wave functions for atoms and molecules. J Chem Phys 24:1106–1106CrossRefGoogle Scholar
  109. 109.
    Pastorczak E, Pernal K (2015) ERPA-APSG: a computationally efficient geminal-based method for accurate description of chemical systems. Phys Chem Chem Phys 17:8622–8626PubMedCrossRefGoogle Scholar
  110. 110.
    Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33:8822–8824CrossRefGoogle Scholar
  111. 111.
    Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23:5048CrossRefGoogle Scholar
  112. 112.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868PubMedCrossRefGoogle Scholar
  113. 113.
    Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple. Phys Rev Lett 78:1396CrossRefGoogle Scholar
  114. 114.
    Pernal K (2014) Intergeminal correction to the antisymmetrized product of strongly orthogonal geminals derived from the extended random phase approximation. J Chem Theory Comput 10:4332–4341PubMedCrossRefGoogle Scholar
  115. 115.
    Peyerimhoff SD, Buenker RJ (1969) Study of the geometry and spectra of the allylic systems by ab initio methods. J Chem Phys 51:2528–2537CrossRefGoogle Scholar
  116. 116.
    Pierloot K, van Besien E (2005) Electronic spectrum of UO\(_2^{2+}\) and [UO\(_2\)Cl\(_4\)]\(^{2-}\). J Phys Chem 123:204309CrossRefGoogle Scholar
  117. 117.
    Pierloot K, van Besien E, van Lenthe E, Baerends EJ (2007) Electronic structure and spectrum of UO\(_2^{+2}\) 2 and UO\(_2\)Cl\(_4^{2-}\) calculated with time-dependent density functional theory. J Chem Phys 126:194311PubMedCrossRefGoogle Scholar
  118. 118.
    Rao PRV, Gudi NM, Bagawde SV, Patil SK (1979) The complexing of neptunium(V) by some inorganic ligands. J Inorg Nucl Chem 41:235–239CrossRefGoogle Scholar
  119. 119.
    Rassolov VA (2002) A geminal model chemistry. J Chem Phys 117:5978–5987CrossRefGoogle Scholar
  120. 120.
    Rassolov VA, Xu F, Garashchuk S (2004) Geminal model chemistry II. Perturbative corrections. J Chem Phys 120:10385–10394PubMedCrossRefGoogle Scholar
  121. 121.
    Réal F, Vallet V, Marian C, Wahlgren U (2007) On the bonding and the electric field gradient of the uranyl ion. J Phys Chem 127:214302CrossRefGoogle Scholar
  122. 122.
    Réal F, Gomes ASP, Visscher L, Vallet V, Eliav EJ (2009) Benchmarking electronic structure calculations on the bare UO\(_2^{2+}\) ion: how different are single and multireference electron correlation methods? J Phys Chem A 113:12504–12511PubMedCrossRefGoogle Scholar
  123. 123.
    Reiher M (2006) Douglas-Kroll-Hess Theory: a relativistic electrons-only theory for chemistry. Theor Chem Acc 116:241–252CrossRefGoogle Scholar
  124. 124.
    Reiher M (2012) Relativistic Douglas-Kroll-Hess theory. WIREs Comput Mol Sci 2:139–149CrossRefGoogle Scholar
  125. 125.
    Rissler J, Noack RM, White SR (2006) Measuring orbital interaction using quantum information theory. Chem Phys 323:519–531CrossRefGoogle Scholar
  126. 126.
    Roesch F, Dittrich S, Buklanov GV, Milanov M, Khalkin VA, Dreyer R (1990) Electromigration of carrier-free radionuclides. 12. Reactions of neptunium-239(V) with acetate and citrate ligands in neutral solutions. Radiochim Acta 49:29–34Google Scholar
  127. 127.
    Rosta E, Surján PR (2002) Two-body zeroth order hamiltonians in multireference perturbation theory: the APSG reference state. J Chem Phys 116:878–889CrossRefGoogle Scholar
  128. 128.
    Saitow M, Kurashige Y, Yanai T (2013) Multireference configuration intaraction theory using cumulant reconstruction with internal contraction of density matrix renormalization group wave function. J Chem Phys 139:044118PubMedCrossRefGoogle Scholar
  129. 129.
    Saue T (2012) Relativistic hamiltonians for chemistry: a primer. Chem Phys Chem 3:3077–3094Google Scholar
  130. 130.
    Schimmelpfennig B, Maron L, Wahlgren U, Teichteil C, Fagerli H, Gropen O (1998) On the combination of ECP-based CI calculations with all-electron spin-orbit mean-field integrals. Chem Phys Lett 286:267–271CrossRefGoogle Scholar
  131. 131.
    Schollwöck U (2005) The density-matrix renormalization group. Rev Mod Phys 77:259–315CrossRefGoogle Scholar
  132. 132.
    Sharma S, Chan G (2014) Communication: a flexible multi-reference perturbation theory by minimizing the Hylleraas functional with matrix product states. J Chem Phys 141:111101PubMedCrossRefGoogle Scholar
  133. 133.
    Sikkema J, Visscher L, Saue T, Ilias̆ M, (2009) The molecular mean-field approach for correlated relativistic calculations. J Chem Phys 131:124116Google Scholar
  134. 134.
    Skanthakumar S, Antonio MR, Soderholm L (2008) A comparison of neptunyl(V) and neptunyl(VI) solution coordination: the stability of cation-cation interactions. Inorg Chem 47:4591–4595PubMedCrossRefGoogle Scholar
  135. 135.
    Stein CJ, Reiher M (2016) Automated selection of active orbital spaces. J Chem Theory Comput 12:1760–1771PubMedCrossRefGoogle Scholar
  136. 136.
    Stein T, Henderson TM, Scuseria GE (2014) Seniority-based coupled cluster theory. J Chem Phys 140:214113PubMedCrossRefGoogle Scholar
  137. 137.
    Straka M, Hrobarik P, Kaupp M (2005) Understanding structure and bonding in early actinide 6d\(^0\)5f\(^0\) MX\(_6^q\) (M = Th-Np; X = H, F) complexes in comparison with their transition metal 5d\(^0\) analogues. J Am Chem Soc 127:2591–2599PubMedCrossRefGoogle Scholar
  138. 138.
    Sullivan JC (1962) Complex-ion formation between cations. Spectra and identification of a Np(V)-Cr(III) complex. J Am Chem Soc 84:4256–4259CrossRefGoogle Scholar
  139. 139.
    Sullivan JC, Hindman JC, Zielen AJ (1960) Kinetics of the reduction of neptunium(VI) by uranium(IV). J Am Chem Soc 82:5288–5292CrossRefGoogle Scholar
  140. 140.
    Sullivan JC, Hindman JC, Zielen AJ (1961) Specific interaction between Np(V) and U(VI) in aqueous perchloric acid media. J Am Chem Soc 83:3373–3378CrossRefGoogle Scholar
  141. 141.
    Surján PR, Jeszenszki P, Szabados Á (2015) Role of triplet states in geminal-based perturbation theory. Mol Phys 113:2960–2963CrossRefGoogle Scholar
  142. 142.
    Szalay S, Pfeffer M, Murg V, Barcza G, Verstraete F, Schneider R, Legeza Ö (2015) Tensor product methods and entanglement optimization for ab initio quantum chemistry. Int J Quantum Chem 115:1342–1391CrossRefGoogle Scholar
  143. 143.
    Szalay S, Barcza G, Szilvási T, Veis L, Legeza Ö (2017) The correlation theory of the chemical bond. Sci Rep 7:2237PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Tecmer P, González-Espinoza CE (2018) Electron correlation effects of the ThO and ThS molecules in the spinor basis. A relativistic coupled cluster study of ground and excited states properties. Phys Chem Chem Phys 20:23424–23432PubMedCrossRefGoogle Scholar
  145. 145.
    Tecmer P, Gomes ASP, Ekström U, Visscher L (2011) Electronic spectroscopy of UO\(_2^{2+}\), NUO\(^+\) and NUN: an evaluation of time-dependent density functional theory for actinides. Phys Chem Chem Phys 13:6249–6259PubMedCrossRefGoogle Scholar
  146. 146.
    Tecmer P, Bast R, Ruud K, Visscher L (2012a) Charge-transfer excitations in uranyl tetrachloride \(([{\rm UO}_{2}{\rm Cl}_{4}]^{2-})\): How reliable are electronic spectra from relativistic time-dependent density functional theory? J Phys Chem A 116:7397–7404PubMedCrossRefGoogle Scholar
  147. 147.
    Tecmer P, van Lingen H, Gomes ASP, Visscher L (2012b) The electronic spectrum of CUONg4 (Ng = Ne, Ar, Kr, Xe): new insights in the interaction of the CUO molecule with noble gas matrices. J Chem Phys 137:084308PubMedCrossRefGoogle Scholar
  148. 148.
    Tecmer P, Govind N, Kowalski K, de Jong WA, Visscher L (2013) Reliable modeling of the electronic spectra of realistic uranium complexes. J Chem Phys 139:034301PubMedCrossRefGoogle Scholar
  149. 149.
    Tecmer P, Boguslawski K, Johnson PA, Limacher PA, Chan M, Verstraelen T, Ayers PW (2014a) Assessing the accuracy of new geminal-based approaches. J Phys Chem A 118:9058–9068PubMedCrossRefGoogle Scholar
  150. 150.
    Tecmer P, Boguslawski K, Legeza Örs, Reiher M (2014b) Unravelling the quantum-entanglement effect of noble gas coordination on the spin ground state of CUO. Phys Chem Chem Phys 16:719–727PubMedCrossRefGoogle Scholar
  151. 151.
    Tecmer P, Gomes ASP, Knecht S, Visscher L (2014c) Communication: Relativistic fock-space coupled cluster study of small building blocks of larger uranium complexes. J Chem Phys 141:041107PubMedCrossRefGoogle Scholar
  152. 152.
    Tecmer P, Boguslawski K, Ayers PW (2015) Singlet ground state actinide chemistry with geminals. Phys Chem Chem Phys 17:14427–14436PubMedCrossRefGoogle Scholar
  153. 153.
    Tecmer P, Boguslawski K, Kȩdziera D (2017) Relativistic methods in computational quantum chemistry. In: Leszczyński J (ed) Handbook of computational chemistry, vol 2. Springer. Netherlands, Dordrecht, pp 885–926CrossRefGoogle Scholar
  154. 154.
    Vallet V, Maron L, Teichteil C, Flament JP (2000) A two-step uncontracted determinantal effective Hamiltonian-based SO-CI method. J Chem Phys 113:1391–1402CrossRefGoogle Scholar
  155. 155.
    Vallet V, Privalov T, Wahlgren U, Grenthe I (2004) The mechanism of water exchange in AmO\(_2\)(H\(_2\)O)\(_5^{(2+)}\) and in the isoelectronic UO\(_2\)(H\(_2\)O)\(_5^{(+)}\) and NpO\(_2\)(H\(_2\)O)\(_5^{(2+)}\) complexes as studied by quantum chemical methods. J Am Chem Soc 126:7766–7767PubMedCrossRefGoogle Scholar
  156. 156.
    van Lenthe E, Baerends EJ, Snijders JG (1994) Relativistic total energy using regular approximations. J Chem Phys 101:9783CrossRefGoogle Scholar
  157. 157.
    van Wüllen C (2002) Relation between different variants of the generalized Douglas-Kroll transformation through sixth order. J Chem Phys 120:7307–7313CrossRefGoogle Scholar
  158. 158.
    Visscher L (2017) An introduction to relativistic quantum chemistry. In: Reine S, Saue T (eds) European summerschool in quantum chemistry 2017—book III, 10th edn. ESQC committee—2017, chap 7, pp 605–646Google Scholar
  159. 159.
    Vlaisavljevich B, Miró P, Ma D, Sigmon GE, Burns PC, Cramer CJ, Gagliardi L (2013) Synthesis and characterization of the first 2D neptunyl structure stabilized by side-on cation-cation interactions. Chem Eur J 19:2937–2941PubMedCrossRefGoogle Scholar
  160. 160.
    Wang D, van Gunsteren WF, Chai Z (2012a) Recent advances in computational actinoid chemistry. Chem Soc Rev 41:5836–5865PubMedCrossRefGoogle Scholar
  161. 161.
    Wang S, Alekseev EV, Depmeier W, Albrecht-Schmitt TE (2011) Surprising coordination for plutonium in the first plutonium(III) borate. Inorg Chem 50:4692–4694PubMedCrossRefGoogle Scholar
  162. 162.
    Wang S, Diwu J, Alekseev EV, Jouffret LJ, Depmeier W, Albrecht-Schmitt TE (2012b) Cation-cation interactions between neptunyl(VI) units. Inorg Chem 51:7016–7018PubMedCrossRefGoogle Scholar
  163. 163.
    Wei F, Wu G, Schwarz WH, Li J (2011) Geometries, electronic structures, and excited states of UN\(_2\), NUO\(^+\), and UO\(_2^{2+}\): A combined CCSD(T), RAS/CASPT2 and TDDFT study. Theor Chem Acc 129:467–481CrossRefGoogle Scholar
  164. 164.
    Wilson RE, Sio SD, Vallet V (2018) Protactinium and the intersection of actinide and transition metal chemistry. Nat Chem 9:622Google Scholar
  165. 165.
    Wolf A, Reiher M, Hess BA (2002) The generalized Douglas-Kroll transformation. J Chem Phys 117:9215–9226CrossRefGoogle Scholar
  166. 166.
    Wouters S, van Neck D (2014) The density matrix renormalization group for ab initio quantum chemistry. Eur Phys J D 68:272CrossRefGoogle Scholar
  167. 167.
    Wåhlin P, Danilo C, Vallet V, Réal F, Flament JP, Wahlgren U (2008) An investigation of the accuracy of different DFT functionals on the water exchange reaction in hydrated uranyl(VI) in the ground state and the first excited state. J Chem Theory Comput 4:569–577PubMedCrossRefGoogle Scholar
  168. 168.
    Yabushita S, Zhang Z, Pitzer RM (1999) Spin-orbit configuration interaction using the graphical unitary group approach and relativistic core potential and spin-orbit operators. J Phys Chem A 103:5791–5800CrossRefGoogle Scholar
  169. 169.
    Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57CrossRefGoogle Scholar
  170. 170.
    Yanai T, Kurashige Y, Mizukami W, Chalupský J, Lan TN, Saitow M (2015) Density matrix renormalization group for ab initio calculations and associated dynamic correlation methods: a review of theory and applications. Int J Quantum Chem 115:283–299CrossRefGoogle Scholar
  171. 171.
    Zhou MF, Andrews L, Li J, Bursten BE (1999) Reaction of laser-ablated uranium atoms with CO: infrared spectra of the CUO, CUO\(^-\), OUCCO, (\(\eta ^2\)-C\(_2\))UO\(_2\), and U(CO)\(_x\) (x = 1–6) molecules in solid neon. J Am Chem Soc 121:9712–9721CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Aleksandra Leszczyk
    • 1
  • Paweł Tecmer
    • 1
  • Katharina Boguslawski
    • 1
    • 2
    Email author
  1. 1.Faculty of Physics, Astronomy and InformaticsInstitute of Physics, Nicolaus Copernicus University in TorunToruńPoland
  2. 2.Faculty of Chemistry, Nicolaus Copernicus University in TorunToruńPoland

Personalised recommendations