Advertisement

Non-covalent Interactions in Selected Transition Metal Complexes

  • Filip Sagan
  • Mariusz P. MitorajEmail author
Chapter
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 29)

Abstract

Chemical bonding in transition metal complexes is typically described by Dewar–Chatt–Duncanson model which separates donation (ligand → metal) and back-donation (metal → ligand) charge transfer processes—these are with no doubt crucial factors which determine a number of properties of metal complexes. This contribution highlights the importance of various non-covalent interactions including untypical homopolar dihydrogen contacts C–H•••H–C in metal complexes. The selected systems are: (1) Zn(II) species containing NTA (nitrotriacetic acid), NTPA (nitrotri-3-propanoic), BPy (2,2′-bipyridyl) ligands, (2) cis-NiL2–hexane (L–thiourea-based ligand) complex, and (3) hydrogen storage materials LiNMe2BH3 and KNMe2BH3. It is shown consistently by various methods and bonding descriptors including for example the charge and energy decomposition scheme ETS-NOCV, Interacting Quantum Atoms (IQA), Reduced Density Gradient (NCI), Quantum Theory of Atoms in Molecules (QTAIM) and NMR spin-spin 1J(C–H) coupling constants, that London dispersion dominated C–H•••H–C interactions and other more typical hydrogen bonds (e.g. C–H•••N, C–H•••O) driven mostly by electrostatics, are crucial for determination of the structures and stability of the selected metal complexes. Although London dispersion forces are the fundamental factor (~70% of the overall stabilization) contributing to C–H•••H–C interactions, the charge delocalization (outflow of electrons from the σ(C–H) bonds engaged in C–H•••H–C and the accumulation in the interatomic H•••H region) as well as electrostatic terms are also non-negligible (~30%). Remarkably, hydride–hydride interactions B–H•••H–B in LiNMe2BH3 are found to be repulsive due to dominant destabilizing electrostatic contribution as opposed to stabilizing C–H•••H–C.

Keywords

Homopolar dihydrogen interactions Transition metal complexes Non-covalent interactions Hydrogen storage materials ETS-NOCV London dispersion forces 

Notes

Acknowledgements

DFT calculations were partially performed using the PL-Grid Infrastructure and resources provided by the ACC Cyfronet AGH (Cracow, Poland). M. P. M. acknowledges the financial support of the Polish National Science Center within the Sonata Bis Project 2017/26/E/ST4/00104.

References

  1. 1.
    (a) Dewar, MJS (1951) Bull Soc Chim 18:C71–C79 (b) Chatt J, Duncanson JA (1953) J Chem Soc 3:2939–2943 (c) Frenking G, Shaik S (eds) (2014) The chemical bond. Fundamental aspects of chemical bonding (part 1), chemical bonding across the periodic table (part 2), Wiley-VCH, WeinheimGoogle Scholar
  2. 2.
    Zhao L, von Hopffgarten M, Andrada DM, Frenking G (2018) WIREs Comput Mol Sci 8:e1345.  https://doi.org/10.1002/wcms.1345CrossRefGoogle Scholar
  3. 3.
    Brocławik E, Załucka J, Kozyra P, Mitoraj MP, Datka J (2011) Catal Today 169(1):45–51CrossRefGoogle Scholar
  4. 4.
    Broclawik E, Załucka J, Kozyra P, Mitoraj MP, Datka J (2010) J Phys Chem C 114(21):9808–9816CrossRefGoogle Scholar
  5. 5.
    Rejmak P, Mitoraj MP, Broclawik E (2010) Phys Chem Chem Phys 12(10):2321–2330CrossRefGoogle Scholar
  6. 6.
    Wagner JP, Schreiner PR (2015) Angew Chem Int Ed 54:14Google Scholar
  7. 7.
    Liptrot DJ, Power PP (2017) Nat Rev Chem 1:0004CrossRefGoogle Scholar
  8. 8.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104CrossRefGoogle Scholar
  9. 9.
    Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32:1456CrossRefGoogle Scholar
  10. 10.
    Wolters LP, Koekkoek R, Bickelhaupt FM (2015) ACS Catal 5:5766CrossRefGoogle Scholar
  11. 11.
    Matta CF, Hernández-Trujillo J, Tang TH, Bader RFW (2003) Chem Eur J 9:1940CrossRefGoogle Scholar
  12. 12.
    Poater J, Solà M, Bickelhaupt FM (2006) Chem Eur J 12:2889CrossRefGoogle Scholar
  13. 13.
    Bader RFW (2006) Chem Eur J 12:2896CrossRefGoogle Scholar
  14. 14.
    Pendás AM, Francisco E, Blanco MA, Gatti C (2007) Chem Eur J 13:9362CrossRefGoogle Scholar
  15. 15.
    Eskandari K, Alsenoy CV (2014) J Comput Chem 35:1883CrossRefGoogle Scholar
  16. 16.
    Cukrowski I (2015) Comput Theor Chem 1066:62CrossRefGoogle Scholar
  17. 17.
    Weinhold F, Schleyer PR, McKee WC (2014) J Comput Chem 35:1499CrossRefGoogle Scholar
  18. 18.
    Matta CF, Sadjadi SA, Braden DA, Frenking G (2016) J Comput Chem 37:143CrossRefGoogle Scholar
  19. 19.
    Cukrowski I, Sagan F, Mitoraj MP (2016) J Comput Chem 37:2783CrossRefGoogle Scholar
  20. 20.
    Ravindran P, Vajeeston P, Vidya R, Kjekshus A, Fjellvåg H (2002) Phys Rev Lett 89:106403CrossRefGoogle Scholar
  21. 21.
    Schouwink P, Hagemann H, Embs JP, Anna VD, Černy R (2015) J Phys: Condens Matter 27:265403Google Scholar
  22. 22.
    Wolstenholme DJ, Dobson JL, McGrady GS (2015) Dalton Trans 44:9718 and references thereinCrossRefGoogle Scholar
  23. 23.
    Sagan F, Filas R, Mitoraj MP (2016) Crystals 6:28CrossRefGoogle Scholar
  24. 24.
    Echeverría J, Aullón G, Alvarez S (2017) Dalton Trans 46:2844CrossRefGoogle Scholar
  25. 25.
    Yourdkhani S, Jabłoński M, Echeverría J (2017) Phys Chem Chem Phys 19:28044CrossRefGoogle Scholar
  26. 26.
    Echeverría J (2017) Cryst Growth Des 17:2097CrossRefGoogle Scholar
  27. 27.
    Echeverría J, Aullón G, Alvarez S (2017) Int J Quantum Chem 117:e25432CrossRefGoogle Scholar
  28. 28.
    Custelcean R, Jackson JE (2001) Chem Rev 101:1963CrossRefGoogle Scholar
  29. 29.
    Mitoraj MP (2011) J Phys Chem A 115:14708CrossRefGoogle Scholar
  30. 30.
    Grabowski SJ, Ruipérez F (2016) Phys Chem Chem Phys 18:12810CrossRefGoogle Scholar
  31. 31.
    Sagan F, Piękoś Ł, Andrzejak M, Mitoraj MP (2015) Chem Eur J 21:15299CrossRefGoogle Scholar
  32. 32.
    Belkova NV, Epstein LM, Filippov OA, Shubina ES (2016) Chem Rev 116:8545CrossRefGoogle Scholar
  33. 33.
    Gamez P, Mooibroek TJ, Teat SJ, Reedijk J (2007) Acc Chem Res 40:435CrossRefGoogle Scholar
  34. 34.
    Frontera A, Gamez P, Mascal M, Mooibroek TJ, Reedijk J (2011) Angew Chem Int Ed. 50:9564Google Scholar
  35. 35.
    Safin DA, Pialat A, Leitch AA, Tumanov NA, Korobkov I, Filinchuk Y, Brusso JL, Murugesu M (2015) Chem Commun 51:9547CrossRefGoogle Scholar
  36. 36.
    Politzer P, Murray JS, Clark T (2010) Phys Chem Chem Phys 12:7748CrossRefGoogle Scholar
  37. 37.
    Scheiner S (2013) Acc Chem Res 46:280CrossRefGoogle Scholar
  38. 38.
    Bauzá A, Mooibroek T, Frontera A (2016) Chem Rec 16:473CrossRefGoogle Scholar
  39. 39.
    Grabowski SJ, Sokalski WA (2017) Phys Chem Chem Phys 18:1569CrossRefGoogle Scholar
  40. 40.
    Gleiter R, Haberhauer G, Werz DB, Rominger F, Bleiholder C (2018) Chem Rev 118:2010CrossRefGoogle Scholar
  41. 41.
    Grabowski SJ (2006) Hydrogen bonding—new insights. Springer, DordrechtCrossRefGoogle Scholar
  42. 42.
    Scheiner S (1997) Hydrogen bonding a theoretical perspective. Oxford University Press Inc., New YorkGoogle Scholar
  43. 43.
    Grabowski SJ (2016) Crystals 6:59CrossRefGoogle Scholar
  44. 44.
    Grabowski SJ (2011) Chem Rev 111:2597 and references thereinCrossRefGoogle Scholar
  45. 45.
    Petrović P, Djukic JP, Hansen A, Bannwarth C, Grimme S (2016) Non‐covalent stabilization in transition metal coordination and organometallic complexes, Editors(s): Abel M. MaharramovKamran T. MahmudovMaximilian N. KopylovichArmando J. L. Pombeiro, Wiley, Print ISBN:9781119109891Google Scholar
  46. 46.
    Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, OxfordGoogle Scholar
  47. 47.
    Blanco MA, Pendás AM, Francisco E (2005) J Chem Theory Comput 1:1096CrossRefGoogle Scholar
  48. 48.
    Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) J Am Chem Soc 132:6498CrossRefGoogle Scholar
  49. 49.
    Mitoraj M, Michalak A, Ziegler T (2009) J Chem Theory Comput 5:962CrossRefGoogle Scholar
  50. 50.
    Cukrowski I, Govender KK, Mitoraj MP, Srebro M (2011) J Phys Chem A 115:12746CrossRefGoogle Scholar
  51. 51.
    Cukrowski I, de Lange JH, Mitoraj MP (2014) J Phys Chem A 118:623CrossRefGoogle Scholar
  52. 52.
    Safin DA, Babashkina MG, Robeyns K, Mitoraj MP, Kubisiak P, Garcia Y (2015) Chem Eur J 21:16679CrossRefGoogle Scholar
  53. 53.
    Hancock RD, de Sousa AS, Walton GB, Reibenspies JH (2007) Inorg Chem 46:4749CrossRefGoogle Scholar
  54. 54.
    Hambley TW (1986) J Chem Soc Dalton Trans 565Google Scholar
  55. 55.
    Hancock RD, Martell AE (1989) Chem Rev 89:1875CrossRefGoogle Scholar
  56. 56.
    Smith RM, Martell AE (eds) (2004) NIST standard reference database 46. NIST critically selected stability constants of metal complexes database; Version 8.0; US Department of Commerce, National Institute of Standards and Technology: Gaithersburg, MDGoogle Scholar
  57. 57.
    Echeverría J, Aullón G, Danovich D, Shaik S, Alvarez S (2011) Nat Chem 3:323CrossRefGoogle Scholar
  58. 58.
    Krapp A, Frenking G, Uggerud E (2008) Chem Eur J 14:4028CrossRefGoogle Scholar
  59. 59.
    Wang C, Mo Y, Wagner JP, Schreiner PR, Jemmis ED, Danovich D, Shaik S (2015) J Chem Theory Comput 11:1621CrossRefGoogle Scholar
  60. 60.
    Jahiruddin S, Mandal N, Datta A (2018) Chem Phys Chem 19:67CrossRefGoogle Scholar
  61. 61.
    Dutta B, Pratik SM, Jana S, Sinha C, Datta A, Hedayetullah Mir M (2018) ChemistrySelect 3:4289CrossRefGoogle Scholar
  62. 62.
    Mandal N, Pratik SM, Datta A (2017) J Phys Chem B 121:825CrossRefGoogle Scholar
  63. 63.
    de Almeida LR, Carvalho Jr PS, Napolitano HB, Oliveira SS, Camargo AJ, Figueredo AS, de Aquino GLB, Carvalho-Silva VH (2017) Cryst Growth Des 17(10):5145Google Scholar
  64. 64.
    (a) Rösel S, Quanz H, Logemann C, Becker J, Mossou E, Canadillas-Delgado L, Caldeweyher E, Grimme S, Schreiner PR (2017) J Am Chem Soc 139(22):7428 (b) Schneider WB, Bistoni G, Sparta M, Saitow M, Riplinger C, Auer AA, Neese FJ (2016) Chem Theory Comput 12:4778–4792 (c) Lu Q, Neese F, Bistoni G (2018) Angew Chem Int Ed 57:4760–4764Google Scholar
  65. 65.
    Černý R, Ravnsbæk DB, Schouwink P, Filinchuk Y, Penin N, Teyssier J, Smrčok L, Jensen TR (2012) J Phys Chem C 116:1563CrossRefGoogle Scholar
  66. 66.
    Wolstenholme DJ, Flogeras J, Che FN, Decken A, McGrady GS (2013) J Am Chem Soc 135:2439CrossRefGoogle Scholar
  67. 67.
    Wolstenholme DJ, Traboulsee KT, Hua Y, Calhoun LA, McGrady GS (2012) Chem Commun 48:2597CrossRefGoogle Scholar
  68. 68.
    Černý R, Kim KC, Penin N, D’Anna V, Hagemann H, Sholl DS (2010) J Phys Chem C 114:19127CrossRefGoogle Scholar
  69. 69.
    Ravnsbæk D, Filinchuk Y, Cerenius Y, Jakobsen HJ, Besenbacher F, Skibsted J, Jensen TR (2009) Angew Chem Int Ed 48:6659CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Theoretical Chemistry, Faculty of ChemistryJagiellonian UniversityKrakówPoland

Personalised recommendations