Linear Response

  • Tamás Sándor BiróEmail author
  • Antal Jakovác
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)


In this chapter we continue our study of the quantum field theoretical description of the behavior of systems responding dynamically to external perturbations. The dynamical response in the linear approximation reflects some universal features which may help us to understand how a temperature emerges.


  1. 1.
    D. Boyanovski, H.J. de Vega, Dynamical renormalization group approach to relaxation in quantum field theory. Ann. Phys. 307, 335 (2003)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    S. Iso, H. Ohta, T. Suyama, Secular terms in Dyson series to all orders of perturbation. Prog. Theor. Exp. Phys. 2018/8, 083A01 (2018)Google Scholar
  3. 3.
    M.S. Green, Markoff random processes and the statistical mechanics of time-dependent phenomena, II. Irreversible processes in fluids. J. Chem. Phys. 22, 398 (1954)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    R. Kubo, Statistical-mechanical theory of irreversible processes, I. General theory and single applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12, 570 (1957)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    R. Zwanzig, Time-correlation functions and transport coefficients in statistical mechanics. Ann. Rev. Phys. Chem. 16, 67 (1965)ADSCrossRefGoogle Scholar
  6. 6.
    R. Horsley, W. Schonmaker, Quantum field theories out of thermal equilibrium, 1. general considerations. Nucl. Phys. B 280, 716 (1987)ADSCrossRefGoogle Scholar
  7. 7.
    A. Hosoya, M. Shakagami, M. Takao, Nonequilibrium thermodynamics in field theory: transport coefficients. Ann. Phys. 154, 229 (1984)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.H.A.S. Wigner Research Centre for PhysicsBudapestHungary
  2. 2.Institute of PhysicsRoland Eötvös UniversityBudapestHungary

Personalised recommendations