Advertisement

Information Systems for Steel Production: The Importance of Resilience

  • Elmar SteinerEmail author
  • Georg Weichhart
  • Andreas Beham
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11231)

Abstract

In this initial research work we show the industrial need to analyze production systems with respect to their resilience. In the LOISI project enterprise models will be developed to support the analysis and management of resilient production processes for half-finished steel products. We describe the software models currently developed and the conceptual integration. We briefly reflect on challenges to be met in a demanding industrial setting.

Keywords

Production process Discrete-time simulation Operations research Logistics Industry case 

Notes

Acknowledgement

The research described in this paper has been funded by the Governments of Upper Austria, Styria and the FFG: FFG Project “Logistics Optimisation in Steel Industry (LOISI)” Contract nr.: 855325.

References

  1. 1.
    Affenzeller, M., et al.: Simulation-based optimization with HeuristicLab: practical guidelines and real-world applications. In: Mujica Mota, M., De La Mota, I.F., Guimarans Serrano, D. (eds.) Applied Simulation and Optimization, pp. 3–38. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-15033-8_1CrossRefGoogle Scholar
  2. 2.
    Barroso, A., Machado, V., Carvalho, H., Machado, V.C.: Quantifying the supply chain resilience, Chap. 2. In: Applications of Contemporary Management Approaches in Supply Chains. IntechOpen, Rijeka (2015).  https://doi.org/10.5772/59580Google Scholar
  3. 3.
    Beham, A., Kofler, M., Wagner, S., Affenzeller, M.: Coupling simulation with HeuristicLab to solve facility layout problems. In: Winter Simulation Conference, pp. 2205–2217 (2009)Google Scholar
  4. 4.
    Carpenter, S., Walker, B., Anderies, J.M., Abel, N.: From metaphor to measurement: resilience of what to what? Ecosystems 4(8), 765–781 (2001)CrossRefGoogle Scholar
  5. 5.
    Gu, X., Jin, X., Ni, J.: Resilience measures of manufacturing systems under disruptions. In: Proceedings of the ASMA 2014 International Manufacturing Science and Engineering Conference, MSEC 2014 (2014)Google Scholar
  6. 6.
    Lee, S., Gu, X., Ni, J.: Stochastic maintenance opportunity windows for unreliable two-machine one-buffer system. Expert Syst. Appl. 40, 5385–5394 (2013)CrossRefGoogle Scholar
  7. 7.
    Oppl, S.: Evaluation of collaborative modeling processes for knowledge articulation and alignment. Inf. Syst. e-Bus. Manag. 15(3), 717–749 (2017).  https://doi.org/10.1007/s10257-016-0324-9CrossRefGoogle Scholar
  8. 8.
    Oppl, S.: Supporting the collaborative construction of a shared understanding about work with a guided conceptual modeling technique. Group Decis. Negot. 26(2), 247–283 (2017).  https://doi.org/10.1007/s10726-016-9485-7CrossRefGoogle Scholar
  9. 9.
    Rydzak, F., Chlebus, E.: Application of resilience analysis in production systems - Bombardier transportation case study. Technical report. Centre for Advanced Manufacturing Technologies, Wroclaw University of Technology, Wroclaw, Poland (2007). https://www.researchgate.net/profile/Edward_Chlebus/publication/252453880_Application_of_Resilience_Analysis_in_Production_Systems_-_Bombardier_Transportation_Case_Study/links/543bce220cf204cab1db3718.pdf
  10. 10.
    Vasudevan, K.: Selecting simulation abstraction levels in simulation models of complex manufacturing systems. In: Proceedings of the 2011 Winter Simulation Conference, pp. 2268–2277 (2011)Google Scholar
  11. 11.
    Wagner, S., Affenzeller, M.: HeuristicLab: a generic and extensible optimization environment. In: Ribeiro, B., Albrecht, R.F., Dobnikar, A., Pearson, D.W., Steele, N.C. (eds.) Adaptive and Natural Computing Algorithms, pp. 538–541. Springer, Vienna (2005).  https://doi.org/10.1007/3-211-27389-1_130CrossRefGoogle Scholar
  12. 12.
    Wagner, S., et al.: Architecture and design of the HeuristicLab optimization environment. In: Klempous, R., Nikodem, J., Jacak, W., Chaczko, Z. (eds.) Advanced Methods and Applications in Computational Intelligence. TIEI, vol. 6, pp. 197–261. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-319-01436-4_10CrossRefGoogle Scholar
  13. 13.
    Weichhart, G., Stary, C., Vernadat, F.: Enterprise modelling for interoperable and knowledge-based enterprises. Int. J. Prod. Res. 56(8), 2818–2840 (2018).  https://doi.org/10.1080/00207543.2017.1406673CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  1. 1.voestalpine Stahl Donawitz GmbhLeobenAustria
  2. 2.PROFACTOR GmbhSteyrAustria
  3. 3.HEAL: FH-OÖHagenbergAustria

Personalised recommendations