Advertisement

Towards Real-Time Automatic Stress Detection for Office Workplaces

  • Franci Suni Lopez
  • Nelly Condori-FernandezEmail author
  • Alejandro Catala
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 898)

Abstract

In recent years, several stress detection methods have been proposed, usually based on machine learning techniques relying on obstructive sensors, which could be uncomfortable or not suitable in many daily situations. Although studies on emotions are emerging and rising in Software Engineering (SE) research, stress has not been yet well investigated in the SE literature despite its negative impact on user satisfaction and stakeholder performance.

In this paper, we investigate whether we can reliably implement a stress detector in a single pipeline suitable for real-time processing following an arousal-based statistical approach. It works with physiological data gathered by the E4-wristband, which registers electrodermal activity (EDA). We have conducted an experiment to analyze the output of our stress detector with regard to the self-reported stress in similar conditions to a quiet office workplace environment when users are exposed to different emotional triggers.

Keywords

Stress detection Physiological data Emotional trigger 

Notes

Acknowledgments

Authors would like to thank to Dirk Heylen, head of HMI Lab of University of Twente, for facilitating us the HMI Lab to conduct the experiments and his early feedback. Also, We thank all the participants who took part in our research. This work has been supported by grant 234-2015-FONDECYT (Master Program) from Cienciactiva of the National Council for Science, Technology and Technological Innovation (CONCYTEC-PERU). Moreover, this work has received financial support from the Spanish Ministry of Economy, Industry and Competitiveness with the Project: TIN2016-78011-C4-1-R; Council of Culture, Education and University Planning with the project ED431G/08, the European Regional Development Fund (ERDF).

References

  1. 1.
    Alberdi, A., Aztiria, A., Basarab, A.: Towards an automatic early stress recognition system for office environments based on multimodal measurements: a review. J. Biomed. Inf. 59, 49–75 (2016)CrossRefGoogle Scholar
  2. 2.
    Bakker, J., Pechenizkiy, M., Sidorova, N.: What’s your current stress level? detection of stress patterns from gsr sensor data. In: Proceedings of the 2011 IEEE 11th International Conference on Data Mining Workshops ICDMW 2011, pp. 573–580. IEEE Computer Society, Washington (2011)Google Scholar
  3. 3.
    Bauer, G., Lukowicz, P.: Can smartphones detect stress-related changes in the behaviour of individuals? In: 2012 IEEE International Conference on Pervasive Computing and Communications Workshops, pp. 423–426, March 2012Google Scholar
  4. 4.
    Bifet, A., Gavaldà, R.: Learning from time-changing data with adaptive windowing. In: Proceedings of the 2007 SIAM International Conference on Data Mining, pp. 443–448. Society for Industrial and Applied Mathematics, April 2007Google Scholar
  5. 5.
    Bogomolov, A., Lepri, B., Ferron, M., Pianesi, F., Pentland, A.S.: Pervasive stress recognition for sustainable living. In: 2014 IEEE International Conference on Pervasive Computing and Communication Workshops (PERCOM WORKSHOPS), pp. 345–350, March 2014Google Scholar
  6. 6.
    Boucsein, W.: Electrodermal Activity. Springer, New York (2012)CrossRefGoogle Scholar
  7. 7.
    Brouwer, A.M., Hogervorst, M.A.: A new paradigm to induce mental stress: the sing-a-song stress test (SSST). Front. Neurosci. 8, 224 (2014)CrossRefGoogle Scholar
  8. 8.
    Busso, C., et al.: Analysis of emotion recognition using facial expressions, speech and multimodal information. In: Proceedings of the 6th International Conference on Multimodal Interfaces ICMI 2004, pp. 205–211. ACM, New York (2004)Google Scholar
  9. 9.
    Canento, F., Fred, A., Silva, H., Gamboa, H., Lourenço, A.: Multimodal biosignal sensor data handling for emotion recognition. In: 2011 IEEE Sensors Proceedings, pp. 647–650, October 2011Google Scholar
  10. 10.
    Carneiro, D., Castillo, J.C., Novais, P., Fernández-Caballero, A., Neves, J.: Multimodal behavioral analysis for non-invasive stress detection. Expert Syst. Appl. 39(18), 13376–13389 (2012)CrossRefGoogle Scholar
  11. 11.
    Condori-Fernandez, N.: Happyness: an emotion-aware QoS assurance framework for enhancing user experience. In: Proceedings of the 39th International Conference on Software Engineering Companion ICSE-C 2017, pp. 235–237. IEEE Press, Piscataway (2017)Google Scholar
  12. 12.
    Condori-Fernandez, N., Catala, A., Lago, P.: Discovering requirements of behaviour change software systems from negative user experience. In: Proceedings of the 40th International Conference on Software Engineering: Companion Proceeedings ICSE 2018, pp. 222–223. ACM, New York (2018).  https://doi.org/10.1145/3183440.3195072
  13. 13.
    Condori-Fernandez, N., España, S., Sikkel, K., Daneva, M., González, A.: Analyzing the effect of the collaborative interactions on performance of requirements validation. In: Salinesi, C., van de Weerd, I. (eds.) REFSQ 2014. LNCS, vol. 8396, pp. 216–231. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-05843-6_16CrossRefGoogle Scholar
  14. 14.
    Ekman, P.: Basic emotions. In: Handbook of Cognition and Emotion, pp. 45–60. Wiley, January 1999CrossRefGoogle Scholar
  15. 15.
    Garcia-Ceja, E., Osmani, V., Mayora, O.: Automatic stress detection in working environments from smartphones x2019; accelerometer data: a first step. IEEE J. Biomed. Health Inform. 20(4), 1053–1060 (2016)CrossRefGoogle Scholar
  16. 16.
    Girardi, D., Lanubile, F., Novielli, N.: Emotion detection using noninvasive low cost sensors. In: 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII), IEEE, October 2017Google Scholar
  17. 17.
    Gouizi, K., Maaoui, C., Reguig, F.B.: Negative emotion detection using EMG signal. In: 2014 International Conference on Control, Decision and Information Technologies (CoDIT), pp. 690–695, November 2014Google Scholar
  18. 18.
    Graziotin, D., Wang, X., Abrahamsson, P.: Software developers, moods, emotions, and performance. IEEE Softw. 31(4), 24–27 (2014)CrossRefGoogle Scholar
  19. 19.
    Graziotin, D., Wang, X., Abrahamsson, P.: How do you feel, developer? an explanatory theory of the impact of affects on programming performance. PeerJ Comput. Sci. 1, e18 (2015)CrossRefGoogle Scholar
  20. 20.
    Guendil, Z., Lachiri, Z., Maaoui, C., Pruski, A.: Emotion recognition from physiological signals using fusion of wavelet based features. In: 2015 7th International Conference on Modelling, Identification and Control (ICMIC), pp. 1–6, December 2015Google Scholar
  21. 21.
    Healey, J.A., Picard, R.W.: Detecting stress during real-world driving tasks using physiological sensors. Trans. Intell. Transp. Syst. 6(2), 156–166 (2005)CrossRefGoogle Scholar
  22. 22.
    Kanjo, E., Al-Husain, L., Chamberlain, A.: Emotions in context: examining pervasive affective sensing systems, applications, and analyses. Pers. Ubiquit. Comput. 19(7), 1197–1212 (2015)CrossRefGoogle Scholar
  23. 23.
    Kocielnik, R., Sidorova, N., Maggi, F.M., Ouwerkerk, M., Westerink, J.H.D.M.: Smart technologies for long-term stress monitoring at work. In: Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems, pp. 53–58, June 2013Google Scholar
  24. 24.
    Lattimore, P.: Stress-induced eating: an alternative method for inducing ego-threatening stress. Appetite 36(2), 187–188 (2001)CrossRefGoogle Scholar
  25. 25.
    Le, H.T., Vea, L.A.: A customer emotion recognition through facial expression using kinect sensors v1 and v2: a comparative analysis. In: Proceedings of the 10th International Conference on Ubiquitous Information Management and Communication IMCOM 2016, pp. 80:1–80:7. ACM, New York (2016)Google Scholar
  26. 26.
    Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time series, with implications for streaming algorithms. In: Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery DMKD 2003, pp. 2–11. ACM, New York (2003)Google Scholar
  27. 27.
    Liu, Y., Yu, X., Chen, Z., Liu, B.: Sentiment analysis of sentences with modalities. In: Proceedings of the 2013 International Workshop on Mining Unstructured Big Data Using Natural Language Processing UnstructureNLP 2013, pp. 39–44. ACM, New York (2013)Google Scholar
  28. 28.
    Menne, I.M., Lugrin, B.: In the face of emotion: a behavioral study on emotions towards a robot using the facial action coding system. In: Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction HRI 2017, pp. 205–206. ACM, New York (2017)Google Scholar
  29. 29.
    Mocholi, J., Jaen, J., Krynicki, K., Catala, A., Picón, A., Cadenas, A.: Learning semantically-annotated routes for context-aware recommendations on map navigation systems. Appl. Soft Comput. J. 12(9), 3088–3098 (2012).  https://doi.org/10.1016/j.asoc.2012.05.010CrossRefGoogle Scholar
  30. 30.
    Mocholí, J.A., Martínez, J.J., Catalá, A.: Towards affection integration on context-aware recommendation of semantically annotated routes. In: Workshop Proceedings of the 7th International Conference on Intelligent Environments, IE 2011, Nottingham, 25–28 July 2011, pp. 51–62 (2011).  https://doi.org/10.3233/978-1-60750-795-6-51
  31. 31.
    Mozos, O.M., et al.: Stress detection using wearable physiological and sociometric sensors. Int. J. Neural Syst. 27(02), 1650041 (2017)CrossRefGoogle Scholar
  32. 32.
    Ormeño, Y.I., Panach, J.I., Condori-Fernandez, N., Pastor, O.: Towards a proposal to capture usability requirements through guidelines. In: IEEE 7th International Conference on Research Challenges in Information Science (RCIS), pp. 1–12, May 2013.  https://doi.org/10.1109/RCIS.2013.6577677
  33. 33.
    Passchier-Vermeer, W., Passchier, W.: Noise exposure and public health. Env. Health Perspect. 108(suppl 1), 123–131 (2000)CrossRefGoogle Scholar
  34. 34.
    Sandulescu, V., Andrews, S., Ellis, D., Bellotto, N., Mozos, O.M.: Stress detection using wearable physiological sensors. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo-Moreo, F.J., Adeli, H. (eds.) IWINAC 2015. LNCS, vol. 9107, pp. 526–532. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-18914-7_55CrossRefGoogle Scholar
  35. 35.
    Sano, A., Picard, R.W.: Stress recognition using wearable sensors and mobile phones. In: 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction, pp. 671–676, September 2013Google Scholar
  36. 36.
    Sriramprakash, S., Prasanna, V.D., Murthy, O.R.: Stress detection in working people. Procedia Comput. Sci. 115, 359–366 (2017). 7th International Conference on Advances in Computing & Communications, ICACC-2017, 22–24 August 2017. Cochin, India (2017)CrossRefGoogle Scholar
  37. 37.
    Sun, F.-T., Kuo, C., Cheng, H.-T., Buthpitiya, S., Collins, P., Griss, M.: Activity-aware mental stress detection using physiological sensors. In: Gris, M., Yang, G. (eds.) MobiCASE 2010. LNICST, vol. 76, pp. 282–301. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29336-8_16CrossRefGoogle Scholar
  38. 38.
    Tang, D.: Sentiment-specific representation learning for document-level sentiment analysis. In: Proceedings of the Eighth ACM International Conference on Web Search and Data Mining WSDM 2015, pp. 447–452. ACM, New York (2015)Google Scholar
  39. 39.
    Teruel, M.A., Condori-Fernandez, N., Navarro, E., González, P., Lago, P.: Assessing the impact of the awareness level on a co-operative game. Inf. Softw. Technol. 98, 89–116 (2018).  https://doi.org/10.1016/j.infsof.2018.02.008. http://www.sciencedirect.com/science/article/pii/S0950584918300314CrossRefGoogle Scholar
  40. 40.
    Westman, J.C., Walters, J.R.: Noise and stress: a comprehensive approach. Environ. Health Perspect. 41, 291–309 (1981)CrossRefGoogle Scholar
  41. 41.
    You, Q.: Sentiment and emotion analysis for social multimedia: methodologies and applications. In: Proceedings of the 2016 ACM on Multimedia Conference MM 2016, pp. 1445–1449. ACM, New York (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Franci Suni Lopez
    • 1
    • 2
  • Nelly Condori-Fernandez
    • 3
    • 4
    Email author
  • Alejandro Catala
    • 5
  1. 1.Universidad Católica San PabloArequipaPeru
  2. 2.Universidad Nacional de San Agustín de ArequipaArequipaPeru
  3. 3.Universidade da CorunaA CoruñaSpain
  4. 4.Vrije Universiteit AmsterdamAmsterdamThe Netherlands
  5. 5.Centro Singular de Investigacion en Tecnoloxias da Informacion (CiTIUS)Universidade de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations