Advertisement

Big Data for Development: An Approach as a State Government Capacity in the Countries

  • Marcelino Villaverde AguilarEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 898)

Abstract

The implementation of Big Data architectures has proven to be very useful in the management of companies and global corporations, allowing a greater profitability and shorter investment returns, due to the power of processing and the use of analysis algorithms. However, in the public sector, its development still has a long way to go. This paper provides a public governance perspective which is managed by data based on Big Data platforms, achieving a better orientation of public policies with a holistic focus, turning public agencies into creative and innovative entities that provide not only goods and services, but also, provide relevant knowledge of their respective sectors, obtained as a result of their integration and interactions with other public entities, constituting Big Data as a necessary state capacity that governments should strengthen. Thus, the definition of the components of the proposed architecture is shown, whose main orientation is to ensure that the state policies proposed by governments have an impact on quality of life of its citizens.

Keywords

Big Data Public management Public policies Information technology 

References

  1. 1.
    Repetto F.: Capacidad estatal: requisito necesario para una mejor política social en América Latina. In: VIII Congreso Internacional del CLAD sobre la Reforma del Estado y de la Administración Pública, p. 6, Panamá (2003)Google Scholar
  2. 2.
    Completa, E.: Capacidad Estatal: “Qué tipo de capacidades y para qué tipo de estado”. POSTData: Revista de Reflexión y Análisis Político 22, 111–140 (2017). Grupo Interuniversitario Postdata, Buenos Aires, ArgentinaGoogle Scholar
  3. 3.
    Organisation for Economic Co-operation and Development - (OECD): Integrated Governance for Inclusive Growth, p. 68, 249, París-Francia (2016)Google Scholar
  4. 4.
    Organisation for Economic Co-operation and Development - (OECD): Recommendation of the Council on Digital Government Strategies, p. 7. Public Governance and Territorial Development Directorate, Editions OECD, París-Francia (2014)Google Scholar
  5. 5.
    Alexandru, A., Alexandru, C. A., Coardos, D., Tudora, E.: Big data: concepts, technologies and applications in the public sector. In: 18th International Conference on Applied Computer Science and Engineering, Conference Proceedings, vol. 18, no. 10 (2016)Google Scholar
  6. 6.
    Mercurea, J., Pollittc, H., Bassid, A., Viñualesb, J., Edwardse, N.: Modelling complex systems of heterogeneous agents to better design sustainability transitions policy. Glob. Environ. Chang. 37, 102–115 (2016)CrossRefGoogle Scholar
  7. 7.
    Rodríguez, P., Palomino, N., Mondaca, J.: El uso de datos masivos y sus técnicas analíticas para el diseño e implementación de políticas públicas en Latinoamérica y el Caribe. Banco Interamericano de Desarrollo, pp. 1–8 (2017)Google Scholar
  8. 8.
    Leszek, A.: The role of big data solutions in the management of organizations. Review of selected practical examples. In: International Conference on Communication, Management and Information Technology, pp. 1008–1010 (2015)Google Scholar
  9. 9.
    Tomar, L., Guicheney, W., Kyarisiima, H., Zimani, T.: Big data in the public sector: selected applications and lessons learned. Inter-American Development Bank, pp. 5–7 (2016)Google Scholar
  10. 10.
    Auer, S., et al.: The BigDataEurope platform – supporting the variety dimension of big data. In: Cabot, J., De Virgilio, R., Torlone, R. (eds.) ICWE 2017. LNCS, vol. 10360, pp. 41–59. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-60131-1_3CrossRefGoogle Scholar
  11. 11.
    Goldsmith S., Crawford S., Grohsgal B.: Predictive analytics: driving improvements using data. Inter-American Development Bank, pp. 1–3 (2016)Google Scholar
  12. 12.
    Gartner: Big Data Strategy Components: Business Essentials. http://www.iab.fi/media/tutkimus-matskut/gartner_big_data_strategy_components.pdf. Accessed 21 June 2018
  13. 13.
    National Institute of Standards and Technology (NIST): Big Data Interoperability Framework: Volume 6, Reference Architecture. Special Publication 1500-6, pp. 8–13 (2015)Google Scholar
  14. 14.
    International Organization for Standardization (ISO): ISO/IEC JTC 1 Information technology. Big data preliminary report 2014, pp. 3–11. ISO Published, Switzerland (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Peruvian Engineers AssociationLimaPeru

Personalised recommendations