Advertisement

Variable Order Mittag–Leffler Fractional Operators on Isolated Time Scales and Application to the Calculus of Variations

  • Thabet AbdeljawadEmail author
  • Raziye Mert
  • Delfim F. M. Torres
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 194)

Abstract

We introduce new fractional operators of variable order in isolated time scales with Mittag–Leffler kernels. This allows a general formulation of a class of fractional variational problems involving variable-order difference operators. Main results give fractional integration by parts formulas and necessary optimality conditions of Euler–Lagrange type.

Keywords

Fractional calculus Atangana–Baleanu fractional derivative Fractional variational problems 

Notes

Acknowledgements

Abdeljawad is grateful to Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM), number RG-DES-2017-01-17; Torres to the support of FCT within the R&D unit CIDMA, UID/MAT/04106/2019.

References

  1. 1.
    Abdeljawad, T.: On delta and nabla Caputo fractional differences and dual identities. Discret. Dyn. Nat. Soc. 1, 1–12 (2013)MathSciNetGoogle Scholar
  2. 2.
    Abdeljawad, T., Baleanu, D.: Discrete fractional differences with nonsingular discrete Mittag-Leffler kernels. Adv. Differ. Equ. 1, 1–18 (2016)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Abdeljawad, T., Baleanu, D.: On fractional derivatives with exponential kernel and their discrete versions. Rep. Math. Phys. 80(1), 11–27 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Abdeljawad, T., Jarad, F., Baleanu, D.: A semigroup-like property for discrete Mittag-Leffler functions. Adv. Differ. Equ. 72, 1–7 (2012)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Almeida, R., Tavares, D., Torres, D.F.M.: The Variable-Order Fractional Calculus of Variations. Springer Briefs in Applied Sciences and Technology. Springer, Cham (2018)zbMATHGoogle Scholar
  6. 6.
    Atanackovic, T.M., Pilipovic, S.: Hamilton’s principle with variable order fractional derivatives. Fract. Calc. Appl. Anal. 14(1), 94–109 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Atangana, A.: Fractional Operators with Constant and Variable Order with Application to Geo-Hydrology. Academic, London (2018)zbMATHGoogle Scholar
  8. 8.
    Atangana, A., Baleanu, D.: New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20(2), 763–769 (2016)CrossRefGoogle Scholar
  9. 9.
    Atangana, A., Gómez-Aguilar, J.F.: A new derivative with normal distribution kernel: theory, methods and applications. Phys. A Stat. Mech. Appl. 476, 1–14 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Atangana, A., Gómez-Aguilar, J.F.: Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena. Eur. Phys. J. Plus 133, 1–22 (2018)CrossRefGoogle Scholar
  11. 11.
    Atangana, A., Gómez-Aguilar, J.F.: Fractional derivatives with no-index law property: application to chaos and statistics. Chaos Solitons Fractals 114, 516–535 (2019)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus. Series on Complexity, Nonlinearity and Chaos, vol. 3. World Scientific Publishing Co. Pte. Ltd., Hackensack (2012)Google Scholar
  13. 13.
    Bastos, N.R.O., Ferreira, R.A.C., Torres, D.F.M.: Necessary optimality conditions for fractional difference problems of the calculus of variations. Discret. Contin. Dyn. Syst. 29(2), 417–437 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Bastos, N.R.O., Ferreira, R.A.C., Torres, D.F.M.: Discrete-time fractional variational problems. Signal Process. 91(3), 513–524 (2011)zbMATHCrossRefGoogle Scholar
  15. 15.
    Bastos, N.R.O., Mozyrska, D., Torres, D.F.M.: Fractional derivatives and integrals on time scales via the inverse generalized Laplace transform. Int. J. Math. Comput. 11, 1–9 (2011)MathSciNetGoogle Scholar
  16. 16.
    Bayour, B., Torres, D.F.M.: Complex-valued fractional derivatives on time scales. In: Differential and Difference Equations with Applications. Springer Proceedings in Mathematics and Statistics, vol. 164, pp. 79–87 (2015)CrossRefGoogle Scholar
  17. 17.
    Benkhettou, N., Brito da Cruz, A.M.C., Torres, D.F.M.: Nonsymmetric and symmetric fractional calculi on arbitrary nonempty closed sets. Math. Methods Appl. Sci. 39(2), 261–279 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Benkhettou, N., Hammoudi, A., Torres, D.F.M.: Existence and uniqueness of solution for a fractional Riemann-Liouville initial value problem on time scales. J. King Saud Univ. Sci. 28(1), 87–92 (2016)CrossRefGoogle Scholar
  19. 19.
    Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 73–85 (2015)Google Scholar
  20. 20.
    Caputo, M., Fabrizio, M.: Applications of new time and spatial fractional derivatives with exponential kernels. Prog. Fract. Differ. Appl. 2(1), 1–11 (2016)CrossRefGoogle Scholar
  21. 21.
    Coimbra, C.F.M.: Mechanics with variable-order differential operators. Ann. Phys. 12(11–12), 692–703 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Coronel-Escamilla, A., Gómez-Aguilar, J.F., Torres, L., Escobar-Jiménez, R.F., Valtierra-Rodríguez, M.: Synchronization of chaotic systems involving fractional operators of Liouville-Caputo type with variable-order. Phys. A Stat. Mech. Appl. 487, 1–21 (2017)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Coronel-Escamilla, A., Gómez-Aguilar, J.F., Torres, L., Valtierra-Rodríguez, M., Escobar-Jiménez, R.F.: Design of a state observer to approximate signals by using the concept of fractional variable-order derivative. Digit. Signal Process. 69, 127–139 (2017)CrossRefGoogle Scholar
  24. 24.
    Coronel-Escamilla, A., Gómez-Aguilar, J.F., Torres, L., Escobar-Jiménez, R.F.: A numerical solution for a variable-order reaction-diffusion model by using fractional derivatives with non-local and non-singular kernel. Phys. A Stat. Mech. Appl. 491, 406–424 (2018)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Diaz, G., Coimbra, C.F.M.: Nonlinear dynamics and control of a variable order oscillator with application to the van der Pol equation. Nonlinear Dyn. 56(1–2), 145–157 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Gómez-Aguilar, J.F.: Analytical and Numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations. Phys. A Stat. Mech. Appl. 494, 52–75 (2018)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Gómez-Aguilar, J.F.: Novel analytical solutions of the fractional Drude model. Optik 168, 728–740 (2018)CrossRefGoogle Scholar
  28. 28.
    Gómez-Aguilar, J.F., Atangana, A.: New insight in fractional differentiation: power, exponential decay and Mittag-Leffler laws and applications. Eur. Phys. J. Plus 132(1), 1–13 (2017)CrossRefGoogle Scholar
  29. 29.
    Gómez-Aguilar, J.F., Escobar-Jiménez, R.F., López-López, M.G., Alvarado-Martínez, V.M.: Analysis of projectile motion: a comparative study using fractional operators with power law, exponential decay and Mittag-Leffler kernel. Eur. Phys. J. Plus 133(3), 1–26 (2018)CrossRefGoogle Scholar
  30. 30.
    Goodrich, C., Peterson, A.C.: Discrete Fractional Calculus. Springer, Cham (2015)zbMATHCrossRefGoogle Scholar
  31. 31.
    Hang, Y., Liu, Y., Xu, X., Chen, Y., Mo, S.: Sensitivity analysis based on Markovian integration by parts formula. Math. Comput. Appl. 22(4), 1–12 (2017)MathSciNetGoogle Scholar
  32. 32.
    Lorenzo, C.F., Hartley, T.T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29(1–4), 57–98 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Losada, J., Nieto, J.J.: Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 87–92 (2015)Google Scholar
  34. 34.
    Morales-Delgado, V.F., Taneco-Hernández, M.A., Gómez-Aguilar, J.F.: On the solutions of fractional order of evolution equations. Eur. Phys. J. Plus 132(1), 1–17 (2017)CrossRefGoogle Scholar
  35. 35.
    Nelsen, R.B.: Proof without words: integration by parts. Math. Mag. 64(2), 1–13 (1991)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Pei, B., Xu, Y., Yin, G., Zhang, X.: Averaging principles for functional stochastic partial differential equations driven by a fractional Brownian motion modulated by two-time-scale Markovian switching processes. Nonlinear Anal. Hybrid Syst. 27, 107–124 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Ramirez, L.E.S., Coimbra, C.F.M.: On the selection and meaning of variable order operators for dynamic modeling. Int. J. Differ. Equations 1, 1–16 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Ramirez, L.E.S., Coimbra, C.F.M.: On the variable order dynamics of the nonlinear wake caused by a sedimenting particle. Phys. D 240(13), 1111–1118 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Ross, B., Samko, S.: Fractional integration operator of variable order in the Hölder spaces \(H^{\lambda (x)}\). Int. J. Math. Math. Sci. 18(4), 777–788 (1995)zbMATHGoogle Scholar
  40. 40.
    Samko, S.G.: Fractional integration and differentiation of variable order. Anal. Math. 21(3), 213–236 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Samko, S.G., Ross, B.: Integration and differentiation to a variable fractional order. Integr. Transform. Spec. Funct. 1(4), 277–300 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives (translated from the 1987 Russian original). Gordon and Breach Science Publishers, Yverdon (1993)zbMATHGoogle Scholar
  43. 43.
    Sheng, K., Zhang, W., Bai, Z.: Positive solutions to fractional boundary-value problems with p-Laplacian on time scales. Bound. Value Probl. 1(70), 1–17 (2018)MathSciNetGoogle Scholar
  44. 44.
    Solís-Pérez, J.E., Gómez-Aguilar, J.F., Atangana, A.: Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws. Chaos Solitons Fractals 114, 175–185 (2018)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Tang, J.: Computation of an infinite integral using integration by parts. Math. Methods Appl. Sci. 41(3), 929–935 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Tavares, D., Almeida, R., Torres, D.F.M.: Caputo derivatives of fractional variable order: numerical approximations. Commun. Nonlinear Sci. Numer. Simul. 3, 69–87 (2016)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Tavares, D., Almeida, R., Torres, D.F.M.: Constrained fractional variational problems of variable order. IEEE/CAA J. Autom. Sin. 4(1), 80–88 (2017)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Tavares, D., Almeida, R., Torres, D.F.M.: Fractional Herglotz variational problems of variable order. Discret. Contin. Dyn. Syst. Ser. S 11(1), 143–154 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Tavares, D., Almeida, R., Torres, D.F.M.: Combined fractional variational problems of variable order and some computational aspects. J. Comput. Appl. Math. 339, 374–388 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Zúñiga-Aguilar, C.J., Romero-Ugalde, H.M., Gómez-Aguilar, J.F., Escobar-Jiménez, R.F., Valtierra-Rodríguez, M.: Solving fractional differential equations of variable-order involving operators with Mittag-Leffler kernel using artificial neural networks. Chaos Solitons Fractals 103, 382–403 (2017)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematics and General SciencesPrince Sultan UniversityRiyadhSaudi Arabia
  2. 2.Mechatronic Engineering DepartmentUniversity of Turkish Aeronautical AssociationAnkaraTurkey
  3. 3.Department of MathematicsCenter for Research and Development in Mathematics and Applications (CIDMA), University of AveiroAveiroPortugal

Personalised recommendations