Advertisement

Model of Coupled System of Fractional Reaction-Diffusion Within a New Fractional Derivative Without Singular Kernel

  • K. M. Saad
  • J. F. Gómez-AguilarEmail author
  • A. Atangana
  • R. F. Escobar-Jiménez
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 194)

Abstract

In this chapter, the approximate analytical solutions of a new reaction-diffusion fractional time model are studied. For this analysis is used the p-homotopy transform method based on different kernels (power, exponential and Mittag-Leffler). The system nonlinearities are addressed by the Adomian polynomials. The system convergence is studied by determining the interval of the convergence by \(\hbar \)-curves, as well as, searching for the optimal value of \(\hbar \) which minimize the residual error. Therefore, the optimal \(\hbar \) value is calculated to estimate the order \(\beta \) error. At the end of the chapter, we explained the obtained behavior by plotting the solutions in 3D. The results are accurate.

Keywords

Fractional calculus Atangana–Baleanu fractional derivative Cubic isothermal auto-catalytic chemical system 

Notes

Acknowledgements

José Francisco Gómez Aguilar acknowledges the support provided by CONACyT: Cátedras CONACyT para jóvenes investigadores 2014.

References

  1. 1.
    Merkin, J.H., Needham, D.J., Scott, S.K.: Coupled reaction-diffusion waves in an isothermal autocatalytic chemical system. IMA J. Appl. Math. 50, 43–76 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Podlubny, I.: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Fractional Differential Equations. Academic Press, San Diego (1999)zbMATHGoogle Scholar
  3. 3.
    Caputo, M., Mainardi, F.: A new dissipation model based on memory mechanism. Pure Appl. Geophys. 91, 134–147 (1971)zbMATHCrossRefGoogle Scholar
  4. 4.
    Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular Kernel. Progr. Fract. Differ. Appl. 1(2), 73–85 (2015)Google Scholar
  5. 5.
    Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular Kernel. Theory and application to heat transfer model. Therm. Sci. 20(2), 763–769 (2016)CrossRefGoogle Scholar
  6. 6.
    Alsaedi, A., Baleanu, D., Etemad, S., Rezapour, S.: On coupled systems of time-fractional differential problems by using a new fractional derivative. J. Funct. Spaces 1, 1–16 (2016)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Atangana, A., Nieto, J.J.: Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel. Adv. Mech. Eng. 7, 1–7 (2015)Google Scholar
  8. 8.
    Atangana, A.: On the new fractional derivative and application to nonlinear fishers reaction diffusion equation. App. Math. Comput. 273, 948–956 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Atangana, A., Badr, S.T.A.: Analysis of the Keller-Segel model with a fractional derivative without singular Kernel. Entropy 17, 4439–4453 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Atangana, A., Badr, S.T.A.: Extension of the RLC electrical circuit to fractional derivative without singular Kernel. Adv. Mech. Eng. 7(6), 1–6 (2015)CrossRefGoogle Scholar
  11. 11.
    Atangana, A., Badr, S.T.A.: New model of groundwater flowing within a confine aquifer: application of Caputo-Fabrizio derivative. Arab. J. Geosci. 9(1), 1–8 (2016)CrossRefGoogle Scholar
  12. 12.
    Djida, J.D., Atangana, A., Area, I.: Numerical computation of a fractional derivative with non-local and non-singular Kernel. Math. Model. Nat. Phenom. 12(3), 4–13 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Koca, I.: Analysis of Rubella disease model with non-local and non-singular fractional derivatives. Int. J. Optim. Control. Theor. Appl. (IJOCTA) 8(1), 17–25 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Abro, K.A., Hussain, M., Baig, M.M.: An analytic study of molybdenum disulfide nanofluids using the modern approach of Atangana-Baleanu fractional derivatives. Eur. Phys. J. Plus 132(10), 1–14 (2017)Google Scholar
  15. 15.
    Khan, A., Abro, K.A., Tassaddiq, A., Khan, I.: Atangana-Baleanu and Caputo-Fabrizio analysis of fractional derivatives for heat and mass transfer of second grade fluids over a vertical plate: a comparative study. Entropy 19(8), 1–12 (2017)CrossRefGoogle Scholar
  16. 16.
    Alkahtani, B.S.T., Atangana, A., Koca, I.: Novel analysis of the fractional Zika model using the Adams type predictor-corrector rule for non-singular and non-local fractional operators. J. Nonlinear Sci. Appl. 10(6), 3191–3200 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Singh, J., Kumar, D., Baleanu, D.: On the analysis of chemical kinetics system pertaining to a fractional derivative with Mittag-Leffler type Kernel. Chaos Interdiscip. J. Nonlinear Sci. 27(10), 1–13 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Kumar, D., Singh, J., Baleanu, D.: Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type Kernel. Phys. A Stat. Mech. Appl. 492, 155–167 (2018)MathSciNetCrossRefGoogle Scholar
  19. 19.
    El-Tawil, M.A., Huseen, S.N.: The q-homotopy analysis method (q-ham). Int. J. Appl. Math. Mech. 8(15), 51–75 (2012)Google Scholar
  20. 20.
    Huseen, S.N., Grace, S.R., El-Tawil, M.A.: The optimal q-homotopy analysis method (Oq-HAM). Int. J. Comput. Technol. 11(8), 2859–2866 (2013)CrossRefGoogle Scholar
  21. 21.
    Iyiola, O.S.: q-Homotopy analysis method and application to fingero-imbibition phenomena in double phase flow through porous media. Asian J. Curr. Eng. Math. 2(4), 283–286 (2013)MathSciNetGoogle Scholar
  22. 22.
    Liao, S.-J.: The proposed homotopy analysis technique for the solution of nonlinear problems. Ph.D. thesis, Shanghai Jiao Tong University (1992)Google Scholar
  23. 23.
    Liao, S.-J.: Beyond Perturbation: Introduction to the Homotopy Analysis Method. Chapman and Hall/CRC Press, Boca Raton (2003)CrossRefGoogle Scholar
  24. 24.
    Liao, S.-J.: On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 147, 499–513 (2004)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Liao, S.-J.: Comparison between the homotopy analysis method and homotopy perturbation method. Appl. Math. Comput. 169, 1186–1194 (2005)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Mohamed, M.S., Hamed, Y.S.: Solving the convection-diffusion equation by means of the optimal q-homotopy analysis method (Oq-HAM). Results Phys. 6, 20–25 (2016)zbMATHCrossRefGoogle Scholar
  27. 27.
    Saad, K.M., AL-Shomrani, A.A.: An application of homotopy analysis transform method for Riccati differential equation of fractional order. J. Fract. Calc. Appl. 7, 61–72 (2016)MathSciNetGoogle Scholar
  28. 28.
    Kumar, D., Singh, J., Baleanu, D.: A new analysis for fractional model of regularized long-wave equation arising in ion acoustic plasma waves. Math. Methods Appl. Sci. 40(15), 5642–5653 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Saad, K.M., AL-Shareef, E.H., Mohamed, M.S., Yang, X.J.: Optimal q-homotopy analysis method for time-space fractional gas dynamics equation. Eur. Phys. J. Plus 132(1), 1–11 (2017)CrossRefGoogle Scholar
  30. 30.
    Khan, Y., Austin, F.: Application of the Laplace decomposition method to nonlinear homogeneous and non-homogenous advection equations. Z. Nat. Sect. A 65, 849–853 (2010)Google Scholar
  31. 31.
    Elsaid, A.: Fractional differential transform method combined with the Adomian polynomials. Appl. Math. Comput. 218, 6899–6911 (2012)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Yin, X.B., Kumar, S., Kumar, D.: A modified homotopy analysis method for solution of fractional wave equations. Adv. Fract. Dyn. Mech. Eng. 7(12), 1–8 (2015)Google Scholar
  33. 33.
    Abbasbandy, S., Jalili, M.: Determination of optimal convergence-control parameter value in homotopy analysis method. Numer. Algorithms 64(4), 593–605 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Abbasbandy, S., Shivanian, E.: Predictor homotopy analysis method and its application to some nonlinear problems. Commun. Nonlinear Sci. Numer. Simulat. 16, 2456–2468 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Abo-Dahab, S.M., Mohamed, M.S., Nofal, T.A.: A one step optimal homotopy analysis method for propagation of harmonic waves in nonlinear generalized magnetothermoelasticity with two relaxation times under influence of rotation. Abstract and Applied Analysis, vol. 1, pp. 1–15. Hindawi Publishing Corporation, Cairo (2013)Google Scholar
  36. 36.
    Ghanbari, M., Abbasbandy, S., Allahviranloo, T.: A new approach to determine the convergence-control parameter in the application of the homotopy analysis method to systems of linear equations. Appl. Comput. Math. 12(3), 355–364 (2013)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Gondal, M.A., Arife, A.S., Khan, M., Hussain, I.: An efficient numerical method for solving linear and nonlinear partial differential equations by combining homotopy analysis and transform method. World Appl. Sci. J. 14(12), 1786–1791 (2011)Google Scholar
  38. 38.
    Liao, S.-J.: An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simulat. 15(8), 2003–2016 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Singh, J., Kumar, D., Swroop, R.: Numerical solution of time- and space-fractional coupled burgers equations via homotopy algorithm. Alex. Eng. J. 55(2), 1753–1763 (2016)CrossRefGoogle Scholar
  40. 40.
    Singh, J., Kumar, D., Swroop, R., Kumar, S.: An efficient computational approach for time-fractional Rosenau-Hyman equation. Neural Comput. Appl. 45, 192–204 (2017)Google Scholar
  41. 41.
    Srivastava, H.M., Kumar, D., Singh, J.: An efficient analytical technique for fractional model of vibration equation. Appl. Math. Model. 45, 192–204 (2017)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Yamashita, M., Yabushita, K., Tsuboi, K.: An analytic solution of projectile motion with the quadratic resistance law using the homotopy analysis method. J. Phys. A Math. Gen. 40, 8403–8416 (2007)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • K. M. Saad
    • 1
  • J. F. Gómez-Aguilar
    • 2
    Email author
  • A. Atangana
    • 3
  • R. F. Escobar-Jiménez
    • 4
  1. 1.Department of Mathematical SciencesUniversity of South AfricaFloridaSouth Africa
  2. 2.CONACYT-Tecnológico Nacional de MéxicoCentro Nacional de Investigación y Desarrollo TecnológicoCuernavacaMéxico
  3. 3.Faculty of Natural and Agricultural Sciences, Institute of Groundwater StudiesUniversity of Free StateBloemfonteinSouth Africa
  4. 4.Tecnológico Nacional de MéxicoCentro Nacional de Investigación y Desarrollo TecnológicoCuernavacaMéxico

Personalised recommendations