Advertisement

Heat Transfer Analysis in Ethylene Glycol Based Molybdenum Disulfide Generalized Nanofluid via Atangana–Baleanu Fractional Derivative Approach

  • Farhad Ali
  • Muhammad Saqib
  • Ilyas KhanEmail author
  • Nadeem Ahmad Sheikh
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 194)

Abstract

At the end of 2016, Atangana and Baleanu introduced a new definition for fractional derivatives, namely Atangana–Baleanu fractional derivatives with the non-singular and non-local kernel. The idea of Atangana–Baleanu was used by several authors for various types of fractional problems. However, for heat transfer problem, this idea is rarely used in particular when nanofluid is considered. Based on this motivation, this chapter aims to study the flow of ethylene glycol based Molybdenum disulfide generalized nanofluid (EGMDGN) over an isothermal vertical plate. A fractional model with non-singular and non-local kernel, Atangana–Baleanu fractional derivatives is developed in the form of partial differential equations along with appropriate initial and boundary conditions. Molybdenum disulfide nanoparticles of spherical shape are suspended in Ethylene Glycol (EG) taken as conventional base fluid. The exact solutions are developed for velocity and temperature profiles via the Laplace transform technique. In a limiting sense, the obtained solutions are reduced to fractional Newtonian \((\beta \rightarrow \infty )\), classical Casson fluid \((\alpha \rightarrow 1)\) and classical Newtonian nanofluids. The influence of various pertinent parameters is analyzed in various plots and discussed physically.

Keywords

Fractional calculus Atangana–Baleanu fractional derivative Heat transfer model 

References

  1. 1.
    Li, Y., Tung, S., Schneider, E., Xi, S.: A review on development of nanofluid preparation and characterization. Powder Technol. 196(2), 89–101 (2009)CrossRefGoogle Scholar
  2. 2.
    Bashirnezhad, K., Bazri, S., Safaei, M.R., Goodarzi, M., Dahari, M., Mahian, O., Wongwises, S.: Viscosity of nanofluids: a review of recent experimental studies. Int. Commun. Heat Mass Transf. 73, 114–123 (2016)CrossRefGoogle Scholar
  3. 3.
    Mohamoud, M.J., Singh, T., Mahmoud, S.E., Koc, M., Samara, A., Isaifan, R.J., Atieh, M.A.: Critical review on nanofluids: preparation, characterization and applications. J. Nanomater. 1, 1–22 (2016). (Hindawy)Google Scholar
  4. 4.
    Öztop, H.F., Estellé, P., Yan, W.M., Al-Salem, K., Orfi, J., Mahian, O.: A brief review of natural convection in enclosures under localized heating with and without nanofluids. Int. Commun. Heat Mass Transf. 60, 37–44 (2015)CrossRefGoogle Scholar
  5. 5.
    Kasaeian, A., Azarian, R.D., Mahian, O., Kolsi, L., Chamkha, A.J., Wongwises, S., Pop, I.: Nanofluid flow and heat transfer in porous media: a review of the latest developments. Int. J. Heat Mass Transf. 107, 778–791 (2017)CrossRefGoogle Scholar
  6. 6.
    Maxwell, J.C., Garnett, W., Pesic, P.: An Elementary Treatise on Electricity. Courier Corporation (2005)Google Scholar
  7. 7.
    Gul, A., Khan, I., Shafie, S., Khalid, A., Khan, A.: Heat transfer in MHD mixed convection flow of a ferrofluid along a vertical channel. PloS One 10(11), 1–14 (2015)CrossRefGoogle Scholar
  8. 8.
    Choi, S.U.: Enhancing thermal conductivity of fluids with nanoparticles. ASME-Publications-Fed 231, 99–106 (1995)Google Scholar
  9. 9.
    Das, S.K., Choi, S.U., Yu, W., Pradeep, T.: Nanofluids: Science and Technology. Wiley, New York (2007)CrossRefGoogle Scholar
  10. 10.
    Wang, X.Q., Mujumdar, A.S.: Heat transfer characteristics of nanofluids: a review. Int. J. Therm. Sci. 46(1), 1–19 (2007)CrossRefGoogle Scholar
  11. 11.
    Ding, Y., Chen, H., Wang, L., Yang, C.Y., He, Y., Yang, W., Huo, R.: Heat transfer intensification using nanofluids. KONA Powder Part. J. 25, 23–38 (2007)CrossRefGoogle Scholar
  12. 12.
    Wang, X.Q., Mujumdar, A.S.: A review on nanofluids-part II: experiments and applications. Braz. J. Chem. Eng. 25(4), 631–648 (2008)CrossRefGoogle Scholar
  13. 13.
    Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128(3), 240–250 (2006)CrossRefGoogle Scholar
  14. 14.
    Haq, R.U., Shahzad, F., Al-Mdallal, Q.M.: MHD pulsatile flow of engine oil based carbon nanotubes between two concentric cylinders. Results Phys. 7, 57–68 (2017)CrossRefGoogle Scholar
  15. 15.
    Shahzad, F., Haq, R.U., Al-Mdallal, Q.M.: Water driven Cu nanoparticles between two concentric ducts with oscillatory pressure gradient. J. Mol. Liq. 224, 322–332 (2016)CrossRefGoogle Scholar
  16. 16.
    Khan, U., Ahmed, N., Mohyud-Din, S.T.: Heat transfer effects on carbon nanotubes suspended nanofluid flow in a channel with non-parallel walls under the effect of velocity slip boundary condition: a numerical study. Neural Comput. Appl. 28(1), 37–46 (2017)CrossRefGoogle Scholar
  17. 17.
    Wakif, A., Boulahia, Z., Sehaqui, R.: Numerical analysis of the onset of longitudinal convective rolls in a porous medium saturated by an electrically conducting nanofluid in the presence of an external magnetic field. Results Phys. 1, 1–21 (2017)Google Scholar
  18. 18.
    Sheikholeslami, M., Vajravelu, K.: Forced convection heat transfer in \(Fe_3O_4\)-ethylene glycol nanofluid under the influence of Coulomb force. J. Mol. Liq. 233, 203–210 (2017)Google Scholar
  19. 19.
    Sheikholeslami, M., Hayat, T., Alsaedi, A.: Numerical simulation of nanofluid forced convection heat transfer improvement in existence of magnetic field using lattice Boltzmann method. Int. J. Heat Mass Transf. 108, 1870–1883 (2017)CrossRefGoogle Scholar
  20. 20.
    Aman, S., Khan, I., Ismail, Z., Al-Mdallal, Q.M.: Heat transfer enhancement in free convection fow of CNTs Maxwell nanofluids with four different types of molecular liquids. Sci. Rep. 7(2445), 1–13 (2017)Google Scholar
  21. 21.
    Ali, F., Gohar, M., Khan, I.: MHD flow of water-based Brinkman type nanofluid over a vertical plate embedded in a porous medium with variable surface velocity, temperature and concentration. J. Mol. Liq. 223, 412–419 (2016)CrossRefGoogle Scholar
  22. 22.
    Wang, H., Yu, L., Lee, Y.H., Shi, Y., Hsu, A., Chin, M.L., Palacios, T.: Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 12(9), 4674–4680 (2012)CrossRefGoogle Scholar
  23. 23.
    Das, S., Chen, H.Y., Penumatcha, A.V., Appenzeller, J.: High performance multilayer \(MoS_2\) transistors with scandium contacts. Nano Lett. 13(1), 100–105 (2012)CrossRefGoogle Scholar
  24. 24.
    Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, I.V., Kis, A.: Single-layer \(MoS_2\) transistors. Nat. Nanotechnol. 6(3), 147–150 (2011)Google Scholar
  25. 25.
    Castellanos-Gómez, A., Poot, M., Steele, G.A., Van der Zant, H.S., Agraït, N., Rubio-Bollinger, G.: Mechanical properties of freely suspended semiconducting graphene-like layers based on \(MoS_2\). Nanoscale Res. Lett. 7(1), 1–8 (2012)Google Scholar
  26. 26.
    Winer, W.O.: Molybdenum disulfide as a lubricant: a review of the fundamental knowledge. Wear 10(6), 422–452 (1967)CrossRefGoogle Scholar
  27. 27.
    Kato, H., Takama, M., Iwai, Y., Washida, K., Sasaki, Y.: Wear and mechanical properties of sintered copper-tin composites containing graphite or molybdenum disulfide. Wear 255(1), 573–578 (2003)CrossRefGoogle Scholar
  28. 28.
    Mao, C., Huang, Y., Zhou, X., Gan, H., Zhang, J., Zhou, Z.: The tribological properties of nanofluid used in minimum quantity lubrication grinding. Int. J. Adv. Manuf. Technol. 71(5–8), 1221–1228 (2014)CrossRefGoogle Scholar
  29. 29.
    Shafie, S., Gul, A., Khan, I.: Molybdenum disulfide nanoparticles suspended in water-based nanofluids with mixed convection and flow inside a channel filled with saturated porous medium. In: Proceedings of the 2nd International Conference on Mathematics, Engineering and Industrial Applications (icomeia2016), vol. 1775, no. 1, pp. 1–6. AIP Publishing (2016)Google Scholar
  30. 30.
    Khan, I., Gul, A., Shafie, S.: Effects of magnetic field on molybdenum disulfide nanofluids in mixed convection flow inside a channel filled with a saturated porous medium. J. Porous Media 20(5), 1–14 (2017)CrossRefGoogle Scholar
  31. 31.
    Khan, I.: Shape effects of \(MoS_2\) nanoparticles on MHD slip flow of molybdenum disulphide nanofluid in a porous medium. J. Mol. Liq. 233, 442–451 (2017)Google Scholar
  32. 32.
    Saqib, M., Ali, F., Khan, I., Sheikh, N.A., Jan, S.A.A.: Exact solutions for free convection flow of generalized Jeffrey fluid: a Caputo-Fabrizio fractional model. Alex. Eng. J. 1, 1–14 (2017)Google Scholar
  33. 33.
    Hristov, J.: Derivatives with non-singular kernels from the Caputo-Fabrizio definition and beyond: appraising analysis with emphasis on diffusion models. Front. Fract. Calc. 1, 235–295 (2017). (Sharjah: Bentham Science Publishers)Google Scholar
  34. 34.
    Cuahutenango-Barro, B., Taneco-Hernández, M.A., Gómez-Aguilar, J.F.: On the solutions of fractional-time wave equation with memory effect involving operators with regular kernel. Chaos, Solitons & Fractals 115, 283–299 (2018)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Morales-Delgado, V.F., Taneco-Hernández, M.A., Gómez-Aguilar, J.F.: On the solutions of fractional order of evolution equations. Eur. Phys. J. Plus 132(1), 1–17 (2017)CrossRefGoogle Scholar
  36. 36.
    Saad, K.M., Gómez-Aguilar, J.F.: Coupled reaction-diffusion waves in a chemical system via fractional derivatives in Liouville-Caputo sense. Rev. Mex. Fís 64(5), 539–547 (2018)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Ali, F., Saqib, M., Khan, I., Sheikh, N.A.: Application of Caputo-Fabrizio derivatives to MHD free convection flow of generalized Walters’-B fluid model. Eur. Phys. J. Plus 131(10), 1–13 (2016)CrossRefGoogle Scholar
  38. 38.
    Sheikh, N.A., Ali, F., Saqib, M., Khan, I., Jan, S.A.A.: A comparative study of Atangana-Baleanu and Caputo-Fabrizio fractional derivatives to the convective flow of a generalized Casson fluid. Eur. Phys. J. Plus 132(1), 1–15 (2017)CrossRefGoogle Scholar
  39. 39.
    Hristov, J.: Derivation of the fractional Dodson equation and beyond: transient diffusion with a non-singular memory and exponentially fading-out diffusivity. Prop. Fract. Differ. Appl. 3(4), 255–270 (2017)CrossRefGoogle Scholar
  40. 40.
    Coronel-Escamilla, A., Gómez-Aguilar, J.F., Baleanu, D., Córdova-Fraga, T., Escobar-Jiménez, R.F., Olivares-Peregrino, V.H., Qurashi, M.M.A.: Bateman-Feshbach tikochinsky and Caldirola–Kanai oscillators with new fractional differentiation. Entropy 19(2), 1–21 (2017)CrossRefGoogle Scholar
  41. 41.
    Hristov, J.: Steady-state heat conduction in a medium with spatial non-singular fading memory: derivation of Caputo-Fabrizio space-fractional derivative with Jeffrey’s kernel and analytical solutions. Therm. Sci. 1, 115–125 (2016)Google Scholar
  42. 42.
    Hristov, J.: Transient heat diffusion with a non-singular fading memory: from the Cattaneo constitutive equation with Jeffrey’s kernel to the Caputo-Fabrizio time-fractional derivative. Therm. Sci. 20(2), 757–762 (2016)CrossRefGoogle Scholar
  43. 43.
    Saad, K.M., Gómez-Aguilar, J.F.: Analysis of reaction diffusion system via a new fractional derivative with non-singular kernel. Phys. A: Stat. Mech. Appl. 509, 703–716 (2018)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Gómez-Aguilar, J.F., López-López, M.G., Alvarado-Martínez, V.M., Reyes-Reyes, J., Adam-Medina, M.: Modeling diffusive transport with a fractional derivative without singular kernel. Phys. A: Stat. Mech. Appl. 447, 467–481 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Gómez-Aguilar, J.F., Miranda-Hernández, M., López-López, M.G., Alvarado-Martínez, V.M., Baleanu, D.: Modeling and simulation of the fractional space-time diffusion equation. Commun. Nonlinear Sci. Numer. Simul. 30(1–3), 115–127 (2016)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Alegría-Zamudio, M., Escobar-Jiménez, R.F., Gómez-Aguilar, J.F.: Fault tolerant system based on non-integers order observers: application in a heat exchanger. ISA Trans. 80, 286–296 (2018)CrossRefGoogle Scholar
  47. 47.
    Gómez-Aguilar, J.F.: Space-time fractional diffusion equation using a derivative with nonsingular and regular kernel. Phys. A: Stat. Mech. Appl. 465, 562–572 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Ali, F., Jan, S.A.A., Khan, I., Gohar, M., Sheikh, N.A.: Solutions with special functions for time fractional free convection flow of Brinkman-type fluid. Eur. Phys. J. Plus 131(9), 1–13 (2016)CrossRefGoogle Scholar
  49. 49.
    Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20(2), 763–769 (2016)CrossRefGoogle Scholar
  50. 50.
    Atangana, A., Gómez-Aguilar, J.F.: Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena. Eur. Phys. J. Plus 133, 1–22 (2018)CrossRefGoogle Scholar
  51. 51.
    Gómez-Aguilar, J.F., Atangana, A.: New insight in fractional differentiation: power, exponential decay and Mittag-Leffler laws and applications. Eur. Phys. J. Plus 132(1), 1–13 (2017)CrossRefGoogle Scholar
  52. 52.
    Atangana, A., Gómez-Aguilar, J.F.: Fractional derivatives with no-index law property: application to chaos and statistics. Chaos, Solitons & Fractals 114, 516–535 (2018)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Gómez-Aguilar, J.F., Atangana, A.: Fractional derivatives with the power-law and the Mittag-Leffler kernel applied to the nonlinear Baggs-Freedman model. Fractal Fract. 2(1), 1–10 (2018)CrossRefGoogle Scholar
  54. 54.
    Atangana, A., Koca, I.: Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order. Chaos, Solitons & Fractals 1, 1–8 (2016)MathSciNetzbMATHGoogle Scholar
  55. 55.
    Casson, N.: A Flow Equation for Pigment-Oil Suspensions of the Printing Ink Type. Pergamon Press, London (1959)Google Scholar
  56. 56.
    Aghili, A.: Solution to time fractional Couette flow. 3, 1–9 (2017). (in other words)Google Scholar
  57. 57.
    Gómez-Aguilar, J.F., Escobar-Jiménez, R.F., Olivares-Peregrino, V.H., Benavides-Cruz, M., Calderón-Ramon, C.: Nonlocal electrical diffusion equation. Int. J. Mod. Phys. C 27(01), 1–16 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Farhad Ali
    • 1
    • 2
    • 3
  • Muhammad Saqib
    • 1
    • 2
    • 3
  • Ilyas Khan
    • 2
    Email author
  • Nadeem Ahmad Sheikh
    • 1
    • 2
    • 3
  1. 1.Computational Analysis Research GroupTon Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Faculty of Mathematics and StatisticsTon Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.Department of MathematicsCity University of Science and Information TechnologyPeshawarPakistan

Personalised recommendations