On the Atangana–Baleanu Derivative and Its Relation to the Fading Memory Concept: The Diffusion Equation Formulation

  • Jordan HristovEmail author
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 194)


The constructions of physically adequate forms of the diffusion equation with implementation of the Atangana–Baleanu derivative with Mittag-Leffler exponential kernel have been discussed. The specific form of the corresponding Atangana–Baleanu integral relates it directly to the fading memory concept, following the Boltzmann linear superposition principle with the standard Riemann-Liouville integral as the time-fading term. This approach relates the new fractional operators with non-singular kernel to the classical Riemann-Liouville integral. Using the concept of the fading memory and the specific form of the Atangana–Baleanu integral three forms of the diffusion equation have been investigated. The adequate definition of the flux to gradient relationship has been the main focus of the study resulting in two physically adequate formulations of the diffusion equation. The direct (formalistic) fractionalization of the classical diffusion equation results in physically inadequate relationships.


Fractional calculus Atangana–Baleanu fractional derivative Diffusion equation 


  1. 1.
    Atangana, A.: Non validity of index law in fractional calculus: a fractional differential operator with Markovian and non-Markovian properties. Phys. A 505, 688–706 (2018)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Atangana, A., Baleanu, D.: New fractional derivatives with non-local and non-singular kernel: theory and application to Heat transfer model. Therm. Sci. 20, 763–769 (2016)CrossRefGoogle Scholar
  3. 3.
    Atangana, A., Gómez-Aguilar, J.F.: Fractional derivatives with no-index law property: application to chaos and statistics. Chaos Solitons Fractals 114, 516–535 (2018)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Atangana, A., Gómez-Aguilar, J.F.: Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena. Eur. Phys. J. Plus 133, 1–21 (2018)CrossRefGoogle Scholar
  5. 5.
    Baleanu, D., Fernandez, A.: On some new properties of fractional derivatives with Mittag-Leffler kernel. Commun. Nonlinear Sci. Numer. Simul. 59, 444–462 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Boltzmann, L.: Zur Theorie der Elastischen Nachwirkung. Sitzungsber. Akad. Wiss. Wien. Mathem.- Naturwiss. 70, 275–300 (1874)Google Scholar
  7. 7.
    Caputo, M.: Linear model of dissipation whose Q is almost frequency independent-II. Geophys. J. R. Astron. Soc. 13, 529–539 (1969)CrossRefGoogle Scholar
  8. 8.
    Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 1, 73–85 (2015)Google Scholar
  9. 9.
    Caputo, M., Fabrizio, M.: Applications of new time and spatial fractional derivatives with exponential kernels. Progr. Fract. Differ. Appl. 2, 1–11 (2016)CrossRefGoogle Scholar
  10. 10.
    Coleman, B., Gurtin, M.E.: Equipresence and constitutive equations for rigid heat conductors. Z. Angew. Math. Phys. 18, 188–208 (1967)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Coleman, B., Noll, W.: Foundations of linear viscoelasticity. Rev. Mod. Phys. 33, 239–249 (1961)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Coronel-Escamilla, A., Gómez-Aguilar, J.F., Baleanu, D., Córdova-Fraga, T., Escobar-Jiménez, R.F., Olivares-Peregrino, V.H., Qurashi, M.M.A.: Bateman-Feshbach tikochinsky and Caldirola-Kanai oscillators with new fractional differentiation. Entropy 19(2), 1–21 (2017)CrossRefGoogle Scholar
  13. 13.
    Fa, K.S., Lenzi, E.K.: Anomalous diffusion, solutions, and the first passage time: Influence of diffusion coefficient. Phys. Rev. E 71, 1–8 (2005)CrossRefGoogle Scholar
  14. 14.
    Fernandez, A., Baleanu, D.: The mean value theorem and Taylor’s theorem for fractional derivatives with Mittag-Leffler kernel. Adv. Diff. Eqs. 1, 1–18 (2018)zbMATHGoogle Scholar
  15. 15.
    Fidley, W.N., Lai, J.S., Onaran, K.: Creep and Relaxation of Nonlinear Viscoelastic Materials. North-Hollad, Amsterdam (1976)Google Scholar
  16. 16.
    Gómez-Aguilar, J.F.: Analytical and numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations. Phys. A: Stat. Mech. Appl. 494, 52–75 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Gómez-Aguilar, J.F., Atangana, A.: New insight in fractional differentiation: power, exponential decay and Mittag-Leffler laws and applications. Eur. Phys. J. Plus 132(1), 1–13 (2017)CrossRefGoogle Scholar
  18. 18.
    Gómez-Aguilar, J.F., Escobar-Jiménez, R.F., López-López, M.G., Alvarado-Martínez, V.M.: Atangana-Baleanu fractional derivative applied to electromagnetic waves in dielectric media. J. Electromagn. Waves Appl. 30(15), 1937–1952 (2016)CrossRefGoogle Scholar
  19. 19.
    Gómez-Aguilar, J.F., Atangana, A., Morales-Delgado, J.F.: Electrical circuits RC, LC, and RL described by Atangana-Baleanu fractional derivatives. Int. J. Circ. Theor. Appl. 1, 1–22 (2017)Google Scholar
  20. 20.
    Goodman, T.R.: Application of Integral Methods to Transient Nonlinear Heat Transfer. Advances in Heat Transfer, vol. 1, pp. 51–122. Academic Press, San Diego (1964)Google Scholar
  21. 21.
    Gurtin, M.E.: On the thermodynamics of materials with memory. Arch. Rational. Mech. Anal. 28, 40–50 (1968)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Gurtin, M.E., Pipkin, A.C.: A general theory of heat conduction with finite wave speeds. Arch. Rational Mech. Anal. 31, 113–126 (1968)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Havlin, S., Ben, Avraham D.: Diffusion in disordered media. Adv. Phys. 36, 695–798 (1987)CrossRefGoogle Scholar
  24. 24.
    Hristov, J.: Approximate solutions to time-fractional models by integral balance approach. In: Cattani, C., Srivastava, H.M., Yang, X.-J. (eds.) Fractional Dynamics, pp. 78–109. De Gruyter Open, Berlin (2015)Google Scholar
  25. 25.
    Hristov, J.: Transient heat diffusion with a non-singular fading memory: from the Cattaneo constitutive equation with Jeffrey’s kernel to the Caputo-Fabrizio time-fractional derivative. Therm. Sci. 20, 765–770 (2016)Google Scholar
  26. 26.
    Hristov, J.: Integral solutions to transient nonlinear heat (mass) diffusion with a power-law diffusivity: a semi-infinite medium with fixed boundary conditions. Heat Mass Transf. 52, 635–655 (2016)CrossRefGoogle Scholar
  27. 27.
    Hristov, J.: Steady-state heat conduction in a medium with spatial non-singular fading memory: derivation of Caputo-Fabrizio space-fractional derivative with Jeffrey’s kernel and analytical solutions. Therm. Sci. 21, 827–839 (2017)CrossRefGoogle Scholar
  28. 28.
    Hristov, J.: Double integral-balance method to the fractional subdiffusion equation: approximate solutions, optimization problems to be resolved and numerical simulations. J. Vib. Control 23, 2795–2818 (2017)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Hristov, J.: Space-fractional diffusion with a potential power-law coefficient: transient approximate solution. Progr. Fract. Differ. Appl. 3, 119–139 (2017)Google Scholar
  30. 30.
    Hristov, J.: Transient space-fractional diffusion with a power-law superdiffusivity: approximate integral-balance approach. Fundam. Inform. 151, 371–388 (2017)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Hristov, J.: Fractional derivative with non-singular kernels: from the Caputo-Fabrizio definition and beyond: appraising analysis with emphasis on diffusion models. In: Bhalekar, S. (ed.) Frontiers in Fractional Calculus, pp. 269–342. Bentham Science Publishers, Sharjah (2017)Google Scholar
  32. 32.
    Hristov, J.: Integral-balance solution to nonlinear subdiffusion equation. In: Bhalekar, S. (ed.) Frontiers in Fractional Calculus, pp. 71–106. Bentham Science Publishers, Sharjah (2017)Google Scholar
  33. 33.
    Hughes, B.D.: Random Walks and Random Environments, vol. 1. Random Walks. Oxford University Press, New York (1995)zbMATHGoogle Scholar
  34. 34.
    Le Vot, F., Abad, E., Yuste, S.B.: Continuous time random walk model for anomalous diffusion in expanding media. Phys. Rev. E 1–11 (2017)Google Scholar
  35. 35.
    Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010)CrossRefGoogle Scholar
  36. 36.
    Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A Math. Gen. 37, 161–208 (2004)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Miller, R.K.: An integrodifferential equation for rigid heat conductors with memory. J. Math. Anal. Appl. 66, 313–332 (1978)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Nachlinger, R.R., Weeler, L.: A uniqueness theorem for rigid heat conductors with memory. Q. Appl. Math. 31, 267–273 (1973)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Nunciato, J.W.: On heat conduction in materials with memory. Q. Appl. Math. 29, 187–273 (1971)Google Scholar
  41. 41.
    Nunciato, J.W.: On uniqueness in the linear theory of heat conduction with finite wave speds. SIAM J. Appl. Math. 25, 1–4 (1973)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and some of Their Applications. Academic Press, San Diego, Calif, USA (1999)zbMATHGoogle Scholar
  43. 43.
    Saad, K.M., Gómez-Aguilar, J.F.: Analysis of reaction diffusion system via a new fractional derivative with non-singular kernel. Phys. A: Stat. Mech. Appl. 509, 703–716 (2018)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Scott-Blair, G.W.: Analytical and integrative aspects of the stress-strain-time problem. J. Sci. Instrum. 21, 80–84 (1944)CrossRefGoogle Scholar
  45. 45.
    Storm, M.L.: Heat conduction in simple metals. J. Appl. Phys. 22, 940–951 (1951)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Tateishi, A.A., Ribeiro, H.V., Lenzi, E.K.: The role of fractional time-derivative operators on anomalous diffusion. Front. Phys. 1, 1–16 (2017)Google Scholar
  47. 47.
    Volterra, V.: Theory of functional, English edn. Blackie and Son, London (1930)zbMATHGoogle Scholar
  48. 48.
    Yuste, S.B., Lindenberg, K.: Comments on first passage time for anomalous diffusion. Phys. Rev. E 1–8 (2004)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of Chemical Technology and MetallurgySofiaBulgaria

Personalised recommendations