Advertisement

Measuring the Complexity of DMN Decision Models

  • Faruk HasićEmail author
  • Alexander De Craemer
  • Thijs Hegge
  • Gideon Magala
  • Jan Vanthienen
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 342)

Abstract

Complexity impairs the maintainability and understandability of conceptual models. Complexity metrics have been used in software engineering and business process management (BPM) to capture the degree of complexity of conceptual models. A vast array of metrics has been proposed for processes in BPM. The recent introduction of the Decision Model and Notation (DMN) standard provides opportunities to shift towards the Separation of Concerns paradigm when it comes to modelling processes and decisions. However, unlike for processes, no studies exist that address the representational complexity of DMN decision models. In this paper, we provide a first set of ten complexity metrics for the decision requirements level of the DMN standard by gathering insights from the process modelling and software engineering fields. Additionally, we offer a discussion on the evolution of those metrics and we provide directions for future research on DMN compexity.

Keywords

Decision modelling Decision Model and Notation DMN Complexity Complexity metrics 

References

  1. 1.
    OMG: Decision Model and Notation 1.1 (2016)Google Scholar
  2. 2.
    Horita, F.E., de Albuquerque, J.P., Marchezini, V., Mendiondo, E.M.: Bridging the gap between decision-making and emerging big data sources: an application of a model-based framework to disaster management in Brazil. Decis. Support Syst. 97, 12–22 (2017)CrossRefGoogle Scholar
  3. 3.
    Hasić, F., De Smedt, J., Vanthienen, J.: Augmenting processes with decision intelligence: principles for integrated modelling. Decis. Support Syst. 107, 1–12 (2018)CrossRefGoogle Scholar
  4. 4.
    Estrada-Torres, B., del-Río-Ortega, A., Resinas, M., Ruiz-Cortés, A.: On the relationships between decision management and performance measurement. In: Krogstie, J., Reijers, H.A. (eds.) CAiSE 2018. LNCS, vol. 10816, pp. 311–326. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-91563-0_19CrossRefGoogle Scholar
  5. 5.
    De Smedt, J., Hasić, F., vanden Broucke, S.K.L.M., Vanthienen, J.: Towards a holistic discovery of decisions in process-aware information systems. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNCS, vol. 10445, pp. 183–199. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-65000-5_11CrossRefGoogle Scholar
  6. 6.
    Hasić, F., De Smedt, J., Vanthienen, J.: A service-oriented architecture design of decision-aware information systems: decision as a service. In: Panetto, H., et al. (eds.) On the Move to Meaningful Internet Systems. OTM 2017. LNCS, vol. 10573, pp. 353–361. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69462-7_23CrossRefGoogle Scholar
  7. 7.
    Calvanese, D., Dumas, M., Laurson, Ü., Maggi, F.M., Montali, M., Teinemaa, I.: Semantics, analysis and simplification of DMN decision tables. Inf. Syst. 78, 112–125 (2018)CrossRefGoogle Scholar
  8. 8.
    OMG: Business Process Model and Notation (BPMN) 2.0 (2011)Google Scholar
  9. 9.
    Campos, J., Richetti, P., Baião, F.A., Santoro, F.M.: Discovering business rules in knowledge-intensive processes through decision mining: an experimental study. In: Teniente, E., Weidlich, M. (eds.) BPM 2017. LNBIP, vol. 308, pp. 556–567. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-74030-0_44CrossRefGoogle Scholar
  10. 10.
    Hasić, F., Devadder, L., Dochez, M., Hanot, J., De Smedt, J., Vanthienen, J.: Challenges in refactoring processes to include decision modelling. In: Teniente, E., Weidlich, M. (eds.) BPM 2017. LNBIP, vol. 308, pp. 529–541. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-74030-0_42CrossRefGoogle Scholar
  11. 11.
    Zarghami, A., Sapkota, B., Eslami, M.Z., van Sinderen, M.: Decision as a service: separating decision-making from application process logic. In: EDOC, pp. 103–112. IEEE Computer Society (2012)Google Scholar
  12. 12.
    Mircea, M., Ghilic-Micu, B., Stoica, M.: An agile architecture framework that leverages the strengths of business intelligence, decision management and service orientation. In: Business Intelligence-Solution for Business Development (2011)Google Scholar
  13. 13.
  14. 14.
    Biard, T., Le Mauff, A., Bigand, M., Bourey, J.-P.: Separation of decision modeling from business process modeling using new “decision model and notation” (DMN) for automating operational decision-making. In: Camarinha-Matos, L.M., Bénaben, F., Picard, W. (eds.) PRO-VE 2015. IAICT, vol. 463, pp. 489–496. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24141-8_45CrossRefGoogle Scholar
  15. 15.
    van der Aa, H., Leopold, H., Batoulis, K., Weske, M., Reijers, H.A.: Integrated process and decision modeling for data-driven processes. In: Reichert, M., Reijers, H.A. (eds.) BPM 2015. LNBIP, vol. 256, pp. 405–417. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-42887-1_33CrossRefGoogle Scholar
  16. 16.
    Hasić, F., De Smedt, J., Vanthienen, J.: An illustration of five principles for integrated process and decision modelling (5PDM). Technical report, KU Leuven (2017)Google Scholar
  17. 17.
    Figl, K., Mendling, J., Tokdemir, G., Vanthienen, J.: What we know and what we do not know about DMN. Enterp. Model. Inf. Syst. Archit. 13(2), 1–16 (2018)Google Scholar
  18. 18.
    Woodward, M.R., Hennell, M.A., Hedley, D.: A measure of control flow complexity in program text. IEEE Trans. Softw. Eng. 5(1), 45–50 (1979)CrossRefGoogle Scholar
  19. 19.
    Sharma, A., Kumar, R., Grover, P.: Empirical evaluation and critical review of complexity metrics for software components. In: Proceedings of the 6th WSEAS International Conference on SE, Parallel and Distributed Systems, pp. 24–29 (2007)Google Scholar
  20. 20.
    Queiroz, R., Passos, L., Valente, M.T., Hunsen, C., Apel, S., Czarnecki, K.: The shape of feature code: an analysis of twenty C-preprocessor-based systems. Softw. Syst. Model. 16(1), 77–96 (2017)CrossRefGoogle Scholar
  21. 21.
    Kluza, K., Nalepa, G.J., Lisiecki, J.: Square complexity metrics for business process models. In: Mach-Król, M., Pełech-Pilichowski, T. (eds.) Advances in Business ICT. AISC, vol. 257, pp. 89–107. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-03677-9_6CrossRefGoogle Scholar
  22. 22.
    Gruhn, V., Laue, R.: Adopting the cognitive complexity measure for business process models. In: 2006 5th IEEE International Conference on Cognitive Informatics. ICCI 2006, vol. 1, pp. 236–241. IEEE (2006)Google Scholar
  23. 23.
    Cardoso, J., Mendling, J., Neumann, G., Reijers, H.A.: A discourse on complexity of process models. In: Eder, J., Dustdar, S. (eds.) BPM 2006. LNCS, vol. 4103, pp. 117–128. Springer, Heidelberg (2006).  https://doi.org/10.1007/11837862_13CrossRefGoogle Scholar
  24. 24.
    Kluza, K.: Measuring complexity of business process models integrated with rules. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS (LNAI), vol. 9120, pp. 649–659. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19369-4_57CrossRefGoogle Scholar
  25. 25.
    Sánchez-González, L., García, F., Mendling, J., Ruiz, F., Piattini, M.: Prediction of business process model quality based on structural metrics. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds.) ER 2010. LNCS, vol. 6412, pp. 458–463. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-16373-9_35CrossRefGoogle Scholar
  26. 26.
    Lassen, K.B., van der Aalst, W.M.: Complexity metrics for workflow nets. Inf. Softw. Technol. 51(3), 610–626 (2009)CrossRefGoogle Scholar
  27. 27.
    Gruhn, V., Laue, R.: Complexity metrics for business process models. In: 9th International Conference on Business Information Systems (BIS 2006), vol. 85, pp. 1–12. Citeseer (2006)Google Scholar
  28. 28.
    Polančič, G., Cegnar, B.: Complexity metrics for process models-a systematic literature review. Comput. Stan. Interfaces 51, 104–117 (2017)CrossRefGoogle Scholar
  29. 29.
    Hasić, F., De Smedt, J., Vanthienen, J.: Towards assessing the theoretical complexity of the decision model and notation (DMN). In: Enterprise, Business-Process and Information Systems Modeling, vol. 1859, pp. 64–71. Springer, Heidelberg (2017)Google Scholar
  30. 30.
    Rossi, M., Brinkkemper, S.: Complexity metrics for systems development methods and techniques. Inf. Syst. 21(2), 209–227 (1996)CrossRefGoogle Scholar
  31. 31.
    Dangarska, Z., Figl, K., Mendling, J.: An explorative analysis of the notational characteristics of the decision model and notation (DMN). In: 2016 IEEE 20th International Enterprise Distributed Object Computing Workshop (EDOCW), pp. 1–9. IEEE (2016)Google Scholar
  32. 32.
    Kahn, A.B.: Topological sorting of large networks. Commun. ACM 5(11), 558–562 (1962)CrossRefGoogle Scholar
  33. 33.
    Cardoso, J.: Business process quality metrics: log-based complexity of workflow patterns. In: Meersman, R., Tari, Z. (eds.) OTM 2007. LNCS, vol. 4803, pp. 427–434. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-76848-7_30CrossRefGoogle Scholar
  34. 34.
    Kaimann, R.A.: Coefficient of network complexity. Manag. Sci. 21(2), 172–177 (1974)CrossRefGoogle Scholar
  35. 35.
    McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. 2(4), 308–320 (1976)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Faruk Hasić
    • 1
    Email author
  • Alexander De Craemer
    • 1
  • Thijs Hegge
    • 1
  • Gideon Magala
    • 1
  • Jan Vanthienen
    • 1
  1. 1.Department of Decision Sciences and Information ManagementKU LeuvenLeuvenBelgium

Personalised recommendations