On the Contextualization of Event-Activity Mappings
Abstract
Event log files are used as input to any process mining algorithm. A main assumption of process mining is that each event has been assigned to a distinct process activity already. However, such mapping of events to activities is a considerable challenge. The current status-quo is that approaches indicate only likelihoods of mappings, since there is often more than one possible solution. To increase the quality of event to activity mappings this paper derives a contextualization for event-activity mappings and argues for a stronger consideration of contextual factors. Based on a literature review, the paper provides a framework for classifying context factors for event-activity mappings. We aim to apply this framework to improve the accuracy of event-activity mappings and, thereby, process mining results in scenarios with low-level events.
References
- 1.Soffer, P., et al.: From event streams to process models and back: challenges and opportunities. Information Systems (2018)Google Scholar
- 2.van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4CrossRefGoogle Scholar
- 3.Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P., Toussaint, P.J.: Guided process discovery - a pattern-based approach. Inf. Syst. 76, 1–18 (2018)CrossRefGoogle Scholar
- 4.Günther, C.W.: Process Mining in Flexible Environments. PhD thesis, Technische Universiteit Eindhoven (2009)Google Scholar
- 5.Folino, F., Guarascio, M., Pontieri, L.: Mining predictive process models out of low-level multidimensional logs. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 533–547. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07881-6_36CrossRefGoogle Scholar
- 6.Ferreira, D.R., Szimanski, F., Ralha, C.G.: Improving process models by mining mappings of low-level events to high-level activities. J. Intell. Inf. Syst. 43(2), 379–407 (2014)CrossRefGoogle Scholar
- 7.Eyers, D.M., Gal, A., Jacobsen, H., Weidlich, M.: Integrating process-oriented and event-based systems. Dagstuhl Rep. 6(8), 21–64 (2016)Google Scholar
- 8.van der Aa, H., Leopold, H., Reijers, H.A.: Checking process compliance on the basis of uncertain event-to-activity mappings. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 79–93. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_6CrossRefGoogle Scholar
- 9.Dey, A.K.: Understanding and using context. Pers. Ubiquitous Comput. 5(1), 4–7 (2001)CrossRefGoogle Scholar
- 10.Trunko, R.: Kontextsensitive Ausnahmebehandlung in Geschftsprozessen. Verlag Dr. Hut (2011)Google Scholar
- 11.Bose, R.J.C., Van der Aalst, W.M.: Context aware trace clustering: towards improving process mining results. In: Proceedings of the 2009 SIAM International Conference on Data Mining, SIAM, pp. 401–412 (2009)Google Scholar
- 12.Rosemann, M., Recker, J.: Context-aware process design exploring the extrinsic drivers for process flexibility. In: BPMDS, CEUR Workshop Proceedings, vol. 236 (2006)Google Scholar
- 13.Zimmermann, A., Lorenz, A., Oppermann, R.: An operational definition of context. In: Kokinov, B., Richardson, D.C., Roth-Berghofer, T.R., Vieu, L. (eds.) CONTEXT 2007. LNCS (LNAI), vol. 4635, pp. 558–571. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74255-5_42CrossRefGoogle Scholar
- 14.Mounira, Z., Mahmoud, B.: Context-aware process mining framework for business process flexibility. In: iiWAS 2010, pp. 421–426. ACM (2010)Google Scholar
- 15.Folino, F., Guarascio, M., Pontieri, L.: Discovering context-aware models for predicting business process performances. In: Meersman, R., et al. (eds.) OTM 2012, Part I. LNCS, vol. 7565, pp. 287–304. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33606-5_18CrossRefGoogle Scholar
- 16.Saidani, O., Nurcan, S.: Towards context aware business process modelling. In: BPMDS 2007 (2007)Google Scholar
- 17.Kofod-Petersen, A., Cassens, J.: Using activity theory to model context awareness. In: Roth-Berghofer, T.R., Schulz, S., Leake, D.B. (eds.) MRC 2005. LNCS (LNAI), vol. 3946, pp. 1–17. Springer, Heidelberg (2006). https://doi.org/10.1007/11740674_1CrossRefGoogle Scholar
- 18.Michael, J., Steinberger, C.: Context modeling for active assistance. In: ER Forum/Demos, CEUR Workshop Proceedings, vol. 1979, pp. 207–220 (2017)Google Scholar
- 19.Becker, T., Intoyoad, W.: Context aware process mining in logistics. Procedia CIRP 63, 557–562 (2017). Manufacturing Systems 4.0, Proceedings of the 50th CIRP Conference on Manufacturing SystemsCrossRefGoogle Scholar
- 20.Schnig, S., Cabanillas, C., Jablonski, S., Mendling, J.: A framework for efficiently mining the organisational perspective of business processes. Decis. Support Syst. 89, 87–97 (2016)CrossRefGoogle Scholar
- 21.Măruşter, L., Weijters, A.J.M.M.T., Van Der Aalst, W.M.P., Van Den Bosch, A.: A rule-based approach for process discovery: Dealing with noise and imbalance in process logs. Data Min. Knowl. Discov., 13(1), 67–87 (2006)MathSciNetCrossRefGoogle Scholar
- 22.Hornung, T., Koschmider, A., Oberweis, A.: Rule-based auto completion of business process models. In: CAiSE Forum, CEUR Workshop Proceedings, vol. 247 (2007)Google Scholar
- 23.van der Aalst, W.M.P., Reijers, H.A., Song, M.: Discovering social networks from event logs. Comput. Support. Coop. Work 14(6), 549–593 (2005)CrossRefGoogle Scholar
- 24.Song, M., van der Aalst, W.M.P.: Towards comprehensive support for organizational mining. Decis. Support Syst. 46(1), 300–317 (2008)CrossRefGoogle Scholar
- 25.Jin, T., Wang, J., Wen, L.: Organizational modeling from event logs. In: Sixth International Conference on Grid and Cooperative Computing, pp. 670–675 (2007)Google Scholar
- 26.Rinderle-Ma, S., Wil, M.: Life-cycle support for staff assignment rules in process-aware information systems. Technical report (2007)Google Scholar
- 27.Cheng, H.J., Kumar, A.: Process mining on noisy logs can log sanitization help to improve performance? Decis. Support Syst. 79, 138–149 (2015)CrossRefGoogle Scholar
- 28.Deneckère, R., Hug, C., Khodabandelou, G., Salinesi, C.: Intentional process mining: Discovering and modeling the goals behind processes using supervised learning. IJISMD 5(4), 22–47 (2014)Google Scholar
- 29.Koschmider, A., Song, M., Reijers, H.A.: Advanced social features in a recommendation system for process modeling. In: Abramowicz, W. (ed.) BIS 2009. LNBIP, vol. 21, pp. 109–120. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01190-0_10CrossRefGoogle Scholar
- 30.Caron, F., Vanthienen, J., Baesens, B.: Rule-based business process mining: applications for management. In: Management Intelligent Systems, vol. 171, pp. 273–282. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30864-2_26Google Scholar
- 31.Schönig, S., Gillitzer, F., Zeising, M., Jablonski, S.: Supporting rule-based process mining by user-guided discovery of resource-aware frequent patterns. In: Toumani, F., et al. (eds.) ICSOC 2014. LNCS, vol. 8954, pp. 108–119. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22885-3_10CrossRefGoogle Scholar
- 32.Tax, N., Sidorova, N., Haakma, R., van der Aalst, W.M.P.: Event abstraction for process mining using supervised learning techniques. In: Bi, Y., Kapoor, S., Bhatia, R. (eds.) IntelliSys 2016. LNNS, vol. 15, pp. 251–269. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-56994-9_18CrossRefGoogle Scholar
- 33.Song, M., Günther, C.W., van der Aalst, W.M.P.: Trace clustering in process mining. In: Ardagna, D., Mecella, M., Yang, J. (eds.) BPM 2008. LNBIP, vol. 17, pp. 109–120. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00328-8_11CrossRefGoogle Scholar
- 34.Blank, P., Maurer, M., Siebenhofer, M., Rogge-Solti, A., Schonig, S.: Location-aware path alignment in process mining. EDOCW 2016, 1–8 (2016)Google Scholar
- 35.Fernandez-Llatas, C., Lizondo, A., Monton, E., Benedi, J.M., Traver, V.: Process mining methodology for health process tracking using real-time indoor location systems. Sensors 15(12), 29821–29840 (2015)CrossRefGoogle Scholar
- 36.Koschmider, A., Reijers, H.A.: Improving the process of process modelling by the use of domain process patterns. Enterp. IS 9(1), 29–57 (2015)Google Scholar
- 37.Folino, F., Guarascio, M., Pontieri, L.: Miningmulti-variant process models from low-level logs. In: Abramowicz, W. (ed.) BIS 2015. LNBIP, vol. 208, pp. 165–177. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19027-3_14CrossRefGoogle Scholar
- 38.Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P., Toussaint, P.J.: From low-level events to activities - a pattern-based approach. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 125–141. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4_8CrossRefGoogle Scholar
- 39.Baier, T., Mendling, J., Weske, M.: Bridging abstraction layers in process mining. Inf. Syst. 46, 123–139 (2014)CrossRefGoogle Scholar
- 40.Tax, N., Alasgarov, E., Sidorova, N., Haakma, R.: On generation of time-based label refinements. arXiv preprint arXiv:1609.03333 (2016)
- 41.Diamantini, C., Genga, L., Potena, D.: Behavioral process mining for unstructured processes. J. Intell. Inf. Syst. 47(1), 5–32 (2016)CrossRefGoogle Scholar
- 42.Goedertier, S., Martens, D., Baesens, B., Haesen, R., Vanthienen, J.: A new approach for discovering business process models from event logs. Technical report, SSRN (2007)Google Scholar
- 43.Zang, C., Fan, Y.: Complex event processing in enterprise information systems based on RFID. Enterp. Inf. Syst. 1(1), 3–23 (2007)CrossRefGoogle Scholar
- 44.Alpers, S., Pilipchuk, R., Oberweis, A., Reussner, R.H.: Identifying needs for a holistic modelling approach to privacy aspects in enterprise software systems. ICISSP, SciTePress 18, 74–82 (2018)Google Scholar
- 45.Fazzinga, B., Flesca, S., Furfaro, F., Masciari, E., Pontieri, L.: Efficiently interpreting traces of low level events in business process logs. Inf. Syst. 73, 1–24 (2018)CrossRefGoogle Scholar
- 46.Tax, N., Sidorova, N., van der Aalst, W.M.P.: Discovering more precise process models from event logs by filtering out chaotic activities. J. Intell. Inf. Syst., 1–33 (2018)Google Scholar
- 47.Lu, X., et al.: Semi-supervised log pattern detection and exploration using event concurrence and contextual information. In: Panetto, H., et al. (eds.) On the Move to Meaningful Internet Systems. OTM 2017 Conferences. OTM 2017. Lecture Notes in Computer Science, vol. 10573, pp. 154–174. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69462-7_11CrossRefGoogle Scholar
- 48.Begicheva, K., Lomazova, I.A.: Discovering high-level process models from event logs. Model. Anal. Inf. Syst. 24, 125–140 (2017)MathSciNetCrossRefGoogle Scholar
- 49.Fazzinga, B., Flesca, S., Furfaro, F., Pontieri, L.: Online and offline classification of traces of event logs on the basis of security risks. J. Intell. Inf. Syst. 50(1), 195–230 (2018)CrossRefGoogle Scholar