Advertisement

Retrofitting of Workflow Management Systems with Self-X Capabilities for Internet of Things

  • Ronny SeigerEmail author
  • Peter Heisig
  • Uwe Aßmann
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 342)

Abstract

The Internet of Things (IoT) introduces various new challenges for business process technologies and workflow management systems (WfMS’s) to be used for managing IoT processes. Especially the interactions with the physical world lead to the emergence of new error sources and unanticipated situations that require a self-adaptive WfMS able to react dynamically to unforeseen situations. Despite a large number of existing WfMS’s, only few systems feature self-x capabilities to be used in the dynamic context of IoT. We present a retrofitting process and generic software component based on the MAPE-K feedback loop to add autonomous capabilities to existing WfMS’s. Using a smart home example process, we show how to retrofit different WfMS’s in an invasive and non-invasive way. Experiments and a brief discussion confirm the feasibility of our retrofitting processes and software component to add self-x capabilities to service-oriented WfMS’s in an IoT context.

Keywords

Workflow management systems Self-management Internet of Things Retrofitting 

Notes

Acknowledgements

This research has received funding under the grant number 100268299 by the European Social Fund (ESF) and the German Federal State of Saxony.

References

  1. 1.
    Adams, M., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Worklets: a service-oriented implementation of dynamic flexibility in workflows. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275, pp. 291–308. Springer, Heidelberg (2006).  https://doi.org/10.1007/11914853_18CrossRefGoogle Scholar
  2. 2.
    Adams, M., ter Hofstede, A.H.M., van der Aalst, W.M.P., Edmond, D.: Dynamic, extensible and context-aware exception handling for workflows. In: Meersman, R., Tari, Z. (eds.) OTM 2007. LNCS, vol. 4803, pp. 95–112. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-76848-7_8CrossRefGoogle Scholar
  3. 3.
    Barros, A.P., ter Hofstede, A.H., Szyperski, C.: Retrofitting workflows for B2B component assembly. In: 25th Annual International Computer Software and Applications Conference, COMPSAC 2001, pp. 123–128. IEEE (2001)Google Scholar
  4. 4.
    Chang, C., Srirama, S.N., Buyya, R.: Mobile cloud business process management system for the internet of things: a survey. ACM Comput. Surv. (CSUR) 49(4), 70 (2016)CrossRefGoogle Scholar
  5. 5.
    Computing, A., et al.: An architectural blueprint for autonomic computing. IBM White Pap. 31, 1–6 (2006)Google Scholar
  6. 6.
    Dadam, P., Reichert, M.: The ADEPT project: a decade of research and development for robust and flexible process support. Comput. Sci.-Res. Dev. 23(2), 81–97 (2009)CrossRefGoogle Scholar
  7. 7.
    de Lemos, R., et al.: Software engineering for self-adaptive systems: a second research roadmap. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 1–32. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-35813-5_1CrossRefGoogle Scholar
  8. 8.
    Hoenisch, P., Schulte, S., Dustdar, S., Venugopal, S.: Self-adaptive resource allocation for elastic process execution. In: 2013 IEEE Sixth International Conference on Cloud Computing (CLOUD), pp. 220–227. IEEE (2013)Google Scholar
  9. 9.
    Janiesch, C., et al.: The internet-of-things meets business process management: mutual benefits and challenges. arXiv:1709.03628 (2017)
  10. 10.
    Jazdi, N.: Cyber physical systems in the context of industry 4.0. In: IEEE International Conference on Automation, Quality and Testing, Robotics, pp. 1–4 (2014)Google Scholar
  11. 11.
    Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: Future of Software Engineering, 2007, FOSE 2007, pp. 259–268. IEEE (2007)Google Scholar
  12. 12.
    Lee, K., Paton, N.W., Sakellariou, R., Deelman, E., Fernandes, A.A., Mehta, G.: Adaptive workflow processing and execution in pegasus. Concurr. Comput.: Pract. Exp. 21(16), 1965–1981 (2009)CrossRefGoogle Scholar
  13. 13.
    Leotta, F., Mecella, M., Mendling, J.: Applying process mining to smart spaces: perspectives and research challenges. In: Persson, A., Stirna, J. (eds.) CAiSE 2015. LNBIP, vol. 215, pp. 298–304. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19243-7_28CrossRefGoogle Scholar
  14. 14.
    Marrella, A., Mecella, M., Sardina, S.: Intelligent process adaptation in the SmartPM system. ACM Trans. Intell. Syst. Technol. 8(2), 25:1–25:43 (2016)CrossRefGoogle Scholar
  15. 15.
    Mass, J., Chang, C., Srirama, S.N.: WiseWare: a device-to-device-based business process management system for industrial internet of things. In: IEEE International Conference on Internet of Things (iThings), Green Computing and Communications (GreenCom), Cyber, Physical and Social Computing (CPSCom) and Smart Data (SmartData), pp. 269–275 (2016)Google Scholar
  16. 16.
    Muccini, H., Sharaf, M., Weyns, D.: Self-adaptation for cyber-physical systems: a systematic literature review. In: Proceedings of the 11th International Symposium on Software Engineering for Adaptive and Self-managing Systems, SEAMS 2016, pp. 75–81. ACM, New York (2016)Google Scholar
  17. 17.
    Müller, R., Greiner, U., Rahm, E.: AgentWork: a workflow system supporting rule-based workflow adaptation. Data Knowl. Eng. 51(2), 223–256 (2004)CrossRefGoogle Scholar
  18. 18.
    Oliveira, K., Castro, J., España, S., Pastor, O.: Multi-level autonomic business process management. In: Nurcan, S., et al. (eds.) BPMDS/EMMSAD -2013. LNBIP, vol. 147, pp. 184–198. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38484-4_14CrossRefGoogle Scholar
  19. 19.
    Parekh, J., Kaiser, G., Gross, P., Valetto, G.: Retrofitting autonomic capabilities onto legacy systems. Cluster Comput. 9(2), 141–159 (2006)CrossRefGoogle Scholar
  20. 20.
    Seiger, R., Huber, S., Heisig, P., Aßmann, U.: Toward a framework for self-adaptive workflows in cyber-physical systems. Softw. Syst. Model. (2017)Google Scholar
  21. 21.
    Seiger, R., Huber, S., Schlegel, T.: Toward an execution system for self-healing workflows in cyber-physical systems. Softw. Syst. Model., 1–22 (2016)Google Scholar
  22. 22.
    Seiger, R., Keller, C., Niebling, F., Schlegel, T.: Modelling complex and flexible processes for smart cyber-physical environments. J. Comput. Sci. 10, 137–148 (2015)CrossRefGoogle Scholar
  23. 23.
    Wieland, M., Schwarz, H., Breitenbucher, U., Leymann, F.: Towards situation-aware adaptive workflows: SitOPT—a general purpose situation-aware workflow management system. In: PerCom Workshops, pp. 32–37. IEEE (2015)Google Scholar
  24. 24.
    Xiao, K., Ren, S., Kwiat, K.: Retrofitting cyber physical systems for survivability through external coordination. In: Proceedings of the 41st Annual Hawaii International Conference on System Sciences, pp. 465–465. IEEE (2008)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Software Technology GroupTechnische Universität DresdenDresdenGermany

Personalised recommendations