Advertisement

Mining Product Relationships for Recommendation Based on Cloud Service Data

  • Yuanchun JiangEmail author
  • Cuicui Ji
  • Yang Qian
  • Yezheng Liu
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 342)

Abstract

With the rapid growth of cloud services, it is more and more difficult for users to select appropriate service. Hence, an effective service recommendation method is need to offer suggestions and selections. In this paper, we propose a two- phase approach to discover related cloud services for recommendation by jointly leveraging services’ descriptive texts and their associated tags. In Phase 1, we use a non-parametric Bayesian method, DPMM to classify a large number of cloud services into an optimal number of clusters. In Phase 2, we recommend a personalized PageRank algorithm to obtain more related services for recommendation among the massive cloud service products in the same cluster. Empirical experiments on a real data set show that the proposed two-phase approach is more successful than other candidate methods for service clustering and recommendation.

Keywords

Cloud service Cluster DPMM Personalized PageRank 

References

  1. 1.
    Michael, A., Fox, A., et al.: Above the clouds: a Berkeley view of cloud computing. Electr. Eng. Comput. Sci. 53(4), 50–58 (2009). EECS Department University of California BerkeleyGoogle Scholar
  2. 2.
    Katzan, H.: Cloud software service: concepts, technology, economics. Serv. Sci. 1(4), 256–269 (2013)CrossRefGoogle Scholar
  3. 3.
    Chan, H., Chieu, T.: Ranking and mapping of applications to cloud computing services by SVD. In: Network Operations and Management Symposium Workshops, pp. 362–369. IEEE (2010)Google Scholar
  4. 4.
    Marston, S., Li, Z., Bandyopadhyay, S., et al.: Cloud computing - the business perspective. In: Hawaii International Conference on System Sciences, pp. 1–11. IEEE Computer Society (2011)Google Scholar
  5. 5.
  6. 6.
    Yin, J., Wang, J.: A model-based approach for text clustering with outlier detection. In: IEEE, International Conference on Data Engineering, pp. 625–636. IEEE (2016)Google Scholar
  7. 7.
    Wang, S., Liu, Z., Sun, Q., et al.: Towards an accurate evaluation of quality of cloud service in service-oriented cloud computing. J. Intell. Manuf. 25(2), 283–291 (2014)CrossRefGoogle Scholar
  8. 8.
    Han, H., Mehedi, M., et al.: Efficient service recommendation system for cloud computing market. Commun. Comput. Inf. Sci. 63, 839–845 (2009)Google Scholar
  9. 9.
    Newton, P.C., Arockiam, L.: A Novel Prediction Technique to Improve Quality of Service (QoS) for Heterogeneous Data Traffic. Springer New York, Inc., New York (2011)CrossRefGoogle Scholar
  10. 10.
    Garg, S.K., Versteeg, S., Buyya, R.: A framework for ranking of cloud computing services. Future Gener. Comput. Syst. 29(4), 1012–1023 (2013)CrossRefGoogle Scholar
  11. 11.
    Kong, D., Zhai, Y.: Trust based recommendation system in service-oriented cloud computing. In: International Conference on Cloud and Service Computing, pp. 176–179. IEEE Computer Society (2012)Google Scholar
  12. 12.
    Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. In: Multimedia Services in Intelligent Environments, pp. 734–749. Springer International Publishing (2013)Google Scholar
  13. 13.
    Weiss, A.: Computing in the clouds. Networker 11(4), 16–25 (2007)CrossRefGoogle Scholar
  14. 14.
    Ding, S., Xia, C., Wang, C., et al.: Multi-objective optimization based ranking prediction for cloud service recommendation. Decis. Support Syst. 101, 106–114 (2017)CrossRefGoogle Scholar
  15. 15.
    Li, J., Zeng, X., Xia, J., et al.: Recent advances in approaches of Web service selection based on QoS. Appl. Res. Comput. (2015)Google Scholar
  16. 16.
    Sundareswaran, S., Squicciarini, A., Lin, D.: A brokerage-based approach for cloud service selection. In: IEEE International Conference on Cloud Computing, pp. 558–565. IEEE (2012)Google Scholar
  17. 17.
    Yu, Q.: Decision tree learning from incomplete QoS to bootstrap service recommendation. In: IEEE International Conference on Web Services, pp. 194–201. IEEE (2012)Google Scholar
  18. 18.
    Ding, S., Wang, Z., Wu, D., et al.: Utilizing customer satisfaction in ranking prediction for personalized cloud service selection. Elsevier Science Publishers B. V. (2017)Google Scholar
  19. 19.
    Aggarwal, C.C., Zhai, C.X.: A Survey of Text Clustering Algorithms. Mining Text Data, pp. 77–128. Springer, US (2012)Google Scholar
  20. 20.
    Ma, J., He, J., He, J.: Efficiently finding web services using a clustering semantic approach. In: International Workshop on Context Enabled Source and Service Selection, Integration and Adaptation: Organized with the, International World Wide Web Conference, p. 5. ACM (2008)Google Scholar
  21. 21.
    Chen, L., Wang, Y., Yu, Q., Zheng, Z., Wu, J.: WT-LDA: user tagging augmented LDA for web service clustering. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 162–176. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-45005-1_12CrossRefGoogle Scholar
  22. 22.
    Zhang, N., Wang, J., He, K., et al.: An approach of service discovery based on service goal clustering. In: IEEE International Conference on Services Computing, pp. 114–121. IEEE (2016)Google Scholar
  23. 23.
    Lin, M., Cheung, D.W.: An automatic approach for tagging Web services using machine learning techniques (2016)CrossRefGoogle Scholar
  24. 24.
    Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer New York, Inc., New York (2006)zbMATHGoogle Scholar
  25. 25.
    Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632 (1999)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kamvar, S.D., Haveliwala, T.H., Manning, C.D., et al.: Extrapolation methods for accelerating PageRank computations. In: International Conference on World Wide Web. pp. 261–270. ACM (2003)Google Scholar
  27. 27.
    Hartigan, J.A., Wong, M.A.: Algorithm AS 136: a k-means clustering algorithm. J. Roy. Stat. Soc.. Ser. C (Appl. Stat.) 28(1), 100–108 (1979)CrossRefGoogle Scholar
  28. 28.
    Larson, R.R.: Introduction to information retrieval. J. Am. Soc. Inform. Sci. Technol. 61(4), 852–853 (2010)Google Scholar
  29. 29.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)zbMATHGoogle Scholar
  30. 30.
    Mimno, D., Wallach, H.M., Talley, E., et al.: Optimizing semantic coherence in topic models. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 262–272. Association for Computational Linguistics (2011)Google Scholar
  31. 31.
    Escobar, M.D., West, M.: Bayesian density estimation and inference using mixtures. J. Am. Stat. Assoc. 90(430), 577–588 (1995)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Netzer, O., Feldman, R., Goldenberg, J., et al.: Mine your own business: Market-structure surveillance through text mining. Mark. Sci. 31(3), 521–543 (2012)CrossRefGoogle Scholar
  33. 33.
    Humphreys, A., Jen-Hui Wang, R.: Automated text analysis for consumer research. J. Consum. Res. (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yuanchun Jiang
    • 1
    Email author
  • Cuicui Ji
    • 1
  • Yang Qian
    • 1
  • Yezheng Liu
    • 1
  1. 1.School of ManagementHefei University of TechnologyHefeiPeople’s Republic of China

Personalised recommendations