Advertisement

Modeling Uncertainty in Declarative Artifact-Centric Process Models

  • Rik EshuisEmail author
  • Murat Firat
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 342)

Abstract

Many knowledge-intensive processes are driven by business entities about which knowledge workers make decisions and to which they add information. Artifact-centric process models have been proposed to represent such knowledge-intensive processes. Declarative artifact-centric process models use business rules that define how knowledge experts can make progress in a process. However, in many business situations knowledge experts have to deal with uncertainty and vagueness. Currently, how to deal with such situations cannot be expressed in declarative artifact-centric process models. We propose the use of fuzzy logic to model uncertainty. We use Guard-Stage-Milestone schemas as declarative artifact-centric process notation and we extend them with fuzzy sentries. We explain how the resulting fuzzy GSM schemas can be evaluated by extending an existing GSM engine with a tool for fuzzy evaluation of rules. We evaluate fuzzy GSM schemas by applying them to an existing fragment of regulations for handling a mortgage contract.

References

  1. 1.
    Adam, O., Thomas, O., Martin, G.: Fuzzy workflows - enhancing workflow management with vagueness. In: Proceedings of the EURO/INFORMS 2003 (2003)Google Scholar
  2. 2.
    Azadeh, A., Haghnevis, M., Khodadadegan, Y., Madadi, M.: Modeling and improvement of the integrated business and production processes by fuzzy simulation. In: Proceedings of the SpringSim 2009. SCS/ACM (2009)Google Scholar
  3. 3.
    Bazhenova, E., Haarmann, S., Ihde, S., Solti, A., Weske, M.: Discovery of fuzzy DMN decision models from event logs. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 629–647. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59536-8_39CrossRefGoogle Scholar
  4. 4.
    BizAgi, et al.: Case Management Model and Notation (CMMN), v1.1, OMG Document Number formal/2016-12-01, Object Management Group (2016)Google Scholar
  5. 5.
    Damaggio, E., Hull, R., Vaculín, R.: On the equivalence of incremental and fixpoint semantics for business artifacts with guard-stage-milestone lifecycles. Inf. Syst. 38, 561–584 (2013)CrossRefGoogle Scholar
  6. 6.
    Di Ciccio, C., Marrella, A., Russo, A.: Knowledge-intensive processes: characteristics, requirements and analysis of contemporary approaches. J. Data Semant. 4(1), 29–57 (2015)CrossRefGoogle Scholar
  7. 7.
    Eshuis, R., Hull, R., Sun, Y., Vaculín, R.: Splitting GSM schemas: a framework for outsourcing of declarative artifact systems. Inf. Syst. 46, 157–187 (2014)CrossRefGoogle Scholar
  8. 8.
    Eshuis, R., Hull, R., Yi, M.: Property preservation in adaptive case management. In: Barros, A., Grigori, D., Narendra, N.C., Dam, H.K. (eds.) ICSOC 2015. LNCS, vol. 9435, pp. 285–302. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48616-0_18CrossRefGoogle Scholar
  9. 9.
    Goedertier, S., Vanthienen, J., Caron, F.: Declarative business process modelling: principles and modelling languages. Enterp. IS 9(2), 161–185 (2015)Google Scholar
  10. 10.
    Hakim, A., Gheitasi, M., Soltani, F.: Fuzzy model on selecting processes in business process reengineering. Bus. Proc. Manag. J. 22(6), 1118–1138 (2016)CrossRefGoogle Scholar
  11. 11.
    Hull, R., et al.: Introducing the guard-stage-milestone approach for specifying business entity lifecycles. Proc. WS-FM 2010, 1–24 (2010)Google Scholar
  12. 12.
    Klir, G.J.: Uncertainty and Information: Foundations of Generalized Information Theory. Wiley, Hoboken (2006)zbMATHGoogle Scholar
  13. 13.
    Landry, J.-F., Ulmer, C., Gomez, L.: Fuzzy distributed workflows for crisis management decision makers. In: Ortiz-Arroyo, D., Larsen, H.L., Zeng, D.D., Hicks, D., Wagner, G. (eds.) EuroIsI 2008. LNCS, vol. 5376, pp. 226–236. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-89900-6_23CrossRefGoogle Scholar
  14. 14.
    Nigam, A., Caswell, N.S.: Business artifacts: an approach to operational specification. IBM Syst. J. 42(3), 428–445 (2003)CrossRefGoogle Scholar
  15. 15.
    Ross, T.J.: Fuzzy Logic with Engineering Applications. Wiley, Chichester (2010)CrossRefGoogle Scholar
  16. 16.
    Slavíček, V.: An ontology-driven fuzzy workflow system. In: van Emde Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds.) SOFSEM 2013. LNCS, vol. 7741, pp. 515–527. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-35843-2_44CrossRefGoogle Scholar
  17. 17.
    Thomas, O., Dollmann, T., Loos, P.: Rules integration in business process models - a fuzzy oriented approach. Enterp. Model. Inf. Syst. Arch. 3(2), 18–30 (2008)Google Scholar
  18. 18.
    Vaculín, R., Hull, R., Heath, T., Cochran, C., Nigam, A., Sukaviriya, P.: Declarative business artifact centric modeling of decision and knowledge intensive business processes. Proc. EDOC 2011, 151–160 (2011)Google Scholar
  19. 19.
    Völkner, P., Werners, B.: A simulation-based decision support system for business process planning. Fuzzy Sets Syst. 125(3), 275–287 (2002)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ye, Y., Jiang, Z., Diao, X., Du, G.: Extended event-condition-action rules and fuzzy Petri nets based exception handling for workflow management. Expert Syst. Appl. 38(9), 10847–10861 (2011)CrossRefGoogle Scholar
  21. 21.
    Zakarian, A.: Analysis of process models: a fuzzy logic approach. Int. J. Adv. Manuf. Technol. 17(6), 444–452 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Industrial EngineeringEindhoven University of TechnologyEindhovenNetherlands

Personalised recommendations