Advertisement

Using Indoor Location System Data to Enhance the Quality of Healthcare Event Logs: Opportunities and Challenges

  • Niels MartinEmail author
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 342)

Abstract

Hospitals are becoming more and more aware of the need to manage their business processes. In this respect, process mining is increasingly used to gain insight in healthcare processes, requiring the analysis of event logs originating from the hospital information system. Process mining research mainly focuses on the development of new techniques or the application of existing methods, but the quality of all analyses ultimately depends on the quality of the event log. However, limited research has been done on the improvement of data quality in the process mining field, which is the topic of this paper. In particular, this paper discusses, from a conceptual angle, the opportunities that indoor location system data provides to tackle event log data quality issues. Moreover, the paper reflects upon the associated challenges. In this way, it provides the conceptualization for a new area of research, focusing on the systematic integration of an event log with indoor location system data.

Keywords

Event log Data quality Hospital information systems Indoor location systems data Process mining 

References

  1. 1.
    van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49851-4CrossRefGoogle Scholar
  2. 2.
    van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28108-2_19CrossRefGoogle Scholar
  3. 3.
    Batini, C., Scannapieco, M.: Data Quality: Concepts. Methodologies and Techniques. Springer, Heidelberg (2006).  https://doi.org/10.1007/3-540-33173-5CrossRefzbMATHGoogle Scholar
  4. 4.
    Bendavid, Y.: RTLS in hospitals: technologies and applications. In: Encyclopedia of E-Commerce Development, Implementation, and Management, pp. 1868–1883. IGI Global, Hershey (2016). https://doi.org/10.4018/978-1-4666-9787-4.ch132
  5. 5.
    Bose, R.J.C.P., Mans, R.S., van der Aalst, W.M.P.: Wanna improve process mining results? It’s high time we consider data quality issues seriously. Technical report BPM Center Report BPM-13-02 (2013)Google Scholar
  6. 6.
    Caron, F., Vanthienen, J., Vanhaecht, K., Van Limbergen, E., De Weerdt, J., Baesens, B.: Monitoring care processes in the gynecologic oncology department. Comput. Biol. Med. 44, 88–96 (2014).  https://doi.org/10.1016/j.compbiomed.2013.10.015CrossRefGoogle Scholar
  7. 7.
    Fernandez-Llatas, C., Benedi, J.M., Garcia-Gomez, J.M., Traver, V.: Process mining for individualized behavior modeling using wireless tracking in nursing homes. Sensors 13(11), 15434–15451 (2013).  https://doi.org/10.3390/s131115434CrossRefGoogle Scholar
  8. 8.
    Fernandez-Llatas, C., Lizondo, A., Monton, E., Benedi, J.M., Traver, V.: Process mining methodology for health process tracking using real-time indoor location systems. Sensors 15(12), 29821–29840 (2015).  https://doi.org/10.3390/s151229769CrossRefGoogle Scholar
  9. 9.
    Forsberg, D., Rosipko, B., Sunshine, J.L.: Analyzing PACS usage patterns by means of process mining: steps toward a more detailed workflow analysis in radiology. J. Digit. Imaging 29(1), 47–58 (2016).  https://doi.org/10.1007/s10278-015-9824-2CrossRefGoogle Scholar
  10. 10.
    Gal, A., Senderovich, A., Weidlich, M.: Challenge paper: data quality issues in queue mining. J. Data Inf. Qual. 9(4), 1–5 (2018). paper 18CrossRefGoogle Scholar
  11. 11.
    Gschwandtner, T., Gärtner, J., Aigner, W., Miksch, S.: A taxonomy of dirty time-oriented data. In: Quirchmayr, G., Basl, J., You, I., Xu, L., Weippl, E. (eds.) CD-ARES 2012. LNCS, vol. 7465, pp. 58–72. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32498-7_5CrossRefGoogle Scholar
  12. 12.
    Gunther, C.W., Verbeek, H.M.W.: XES standard definition. Technical report, Eindhoven Unversity of Technology, Eindhoven, The Netherlands (2014)Google Scholar
  13. 13.
    Jeffery, S.R., Garofalakis, M., Franklin, M.J.: Adaptive cleaning for RFID data streams. In: Proceedings of the 32nd International Conference on Very Large Databases, pp. 163–174 (2006)Google Scholar
  14. 14.
    Kim, W., Choi, B.J., Hong, E.K., Kim, S.K., Lee, D.: A taxonomy of dirty data. Data Mining Knowl. Discov. 7(1), 81–99 (2003)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kirchner, K., Herzberg, N., Rogge-Solti, A., Weske, M.: Embedding conformance checking in a process intelligence system in hospital environments. In: Lenz, R., Miksch, S., Peleg, M., Reichert, M., Riaño, D., ten Teije, A. (eds.) KR4HC/ProHealth 2012. LNCS (LNAI), vol. 7738, pp. 126–139. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36438-9_9CrossRefGoogle Scholar
  16. 16.
    Liu, C., Ge, Y., Xiong, H., Xiao, K., Geng, W., Perkins, M.: Proactive workflow modeling by stochastic processes with application to healthcare operation and management. In: Proceedings of the 20th ACM International Conference on Knowledge Discovery and Data Mining, pp. 1593–1602 (2014)Google Scholar
  17. 17.
    Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P., Toussaint, P.J.: Guided process discovery - a pattern-based approach. Inf. Syst. 76, 1–18 (2018).  https://doi.org/10.1016/j.is.2018.01.009CrossRefGoogle Scholar
  18. 18.
    Mans, R., Reijers, H., van Genuchten, M., Wismeijer, D.: Mining processes in dentistry. In: Proceedings of the 2nd ACM International Health Informatics Symposium, pp. 379–388 (2012)Google Scholar
  19. 19.
    Mans, R.S., van der Aalst, W.M.P., Vanwersch, R.J.B.: Process Mining in Healthcare: Evaluating and Exploiting Operational Healthcare Processes. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-319-16071-9CrossRefGoogle Scholar
  20. 20.
    Mans, R.S., van der Aalst, W.M.P., Vanwersch, R.J.B., Moleman, A.J.: Process mining in healthcare: data challenges when answering frequently posed questions. In: Lenz, R., Miksch, S., Peleg, M., Reichert, M., Riaño, D., ten Teije, A. (eds.) KR4HC/ProHealth 2012. LNCS (LNAI), vol. 7738, pp. 140–153. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36438-9_10CrossRefGoogle Scholar
  21. 21.
    Rojas, E., Munoz-Gama, J., Sepúlveda, M., Capurro, D.: Process mining in healthcare: a literature review. J. Biomed. Inform. 61, 224–236 (2016).  https://doi.org/10.1016/j.jbi.2016.04.007CrossRefGoogle Scholar
  22. 22.
    Rovani, M., Maggi, F.M., de Leoni, M., van der Aalst, W.M.P.: Declarative process mining in healthcare. Expert Syst. Appl. 42(23), 9236–9251 (2015).  https://doi.org/10.1016/j.eswa.2015.07.040CrossRefGoogle Scholar
  23. 23.
    Senderovich, A., Rogge-Solti, A., Gal, A., Mendling, J., Mandelbaum, A.: The ROAD from sensor data to process instances via interaction mining. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 257–273. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39696-5_16CrossRefGoogle Scholar
  24. 24.
    Suriadi, S., Andrews, R., ter Hofstede, A.H., Wynn, M.T.: Event log imperfection patterns for process mining: towards a systematic approach to cleaning event logs. Inf. Syst. 64, 132–150 (2017).  https://doi.org/10.1016/j.is.2016.07.011CrossRefGoogle Scholar
  25. 25.
    van der Togt, R., Bakker, P.J., Jaspers, M.W.: A framework for performance and data quality assessment of Radio Frequency IDentification (RFID) systems in health care settings. J. Biomed. Inform. 44(2), 372–383 (2011).  https://doi.org/10.1016/j.jbi.2010.12.004CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Hasselt UniversityDiepenbeekBelgium

Personalised recommendations