Advertisement

Analyzing Medical Emergency Processes with Process Mining: The Stroke Case

  • Carlos Fernandez-LlatasEmail author
  • Gema Ibanez-Sanchez
  • Angeles Celda
  • Jesus Mandingorra
  • Lucia Aparici-Tortajada
  • Antonio Martinez-Millana
  • Jorge Munoz-Gama
  • Marcos Sepúlveda
  • Eric Rojas
  • Víctor Gálvez
  • Daniel Capurro
  • Vicente Traver
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 342)

Abstract

Medical emergencies are one of the most critical processes that occurs in a hospital. The creation of adequate and timely triage protocols, can make the difference between the life and death of the patient. One of the most critical emergency care protocols is the stroke case. This disease demands an accurate and quick diagnosis for ensuring an immediate treatment in order to limit or even, avoid, the undesired cognitive decline. The aim of this paper is perform an analysis of how Process Mining techniques can support health professionals in the interactive analysis of emergency processes considering critical timing of Stroke, using a Question Driven methodology. To demonstrate the possibilities of Process Mining in the characterization of the emergency process, we have used a real log with 9046 emergency episodes from 2145 stroke patients that occurred from January of 2010 to June of 2017. Our results demonstrate how Process Mining technology can highlight the differences of the stroke patient flow in emergency, supporting professionals in the better understanding and improvement of quality of care.

Keywords

Process mining Stroke Emergency Healthcare 

References

  1. 1.
    van der Aalst, W.M.P.: Process Mining: Data Science in Action, 2nd edn. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49851-4CrossRefGoogle Scholar
  2. 2.
    Alberts, M.J., et al.: Recommendations for the establishment of primary stroke centers. JAMA 283(23), 3102–3109 (2000)CrossRefGoogle Scholar
  3. 3.
    Baker, K., et al.: Process mining routinely collected electronic health records to define real-life clinical pathways during chemotherapy. Int. J. Med. Inform. 103, 32–41 (2017)CrossRefGoogle Scholar
  4. 4.
    Bates, D.W., Saria, S., Ohno-Machado, L., Shah, A., Escobar, G.: Big data in health care: using analytics to identify and manage high-risk and high-cost patients. Health Aff. 33(7), 1123–1131 (2014)CrossRefGoogle Scholar
  5. 5.
    Calster, B.V., Steyerberg, E.W., Collins, G.S., Smits, T.: Consequences of relying on statistical significance: some illustrations. Eur. J. Clin. Invest. 48(5), e12912 (2018)CrossRefGoogle Scholar
  6. 6.
    Chavalarias, D., Wallach, J.D., Li, A.H.T., Ioannidis, J.P.A.: Evolution of reporting P values in the biomedical literature, 1990–2015. JAMA 315(11), 1141–1148 (2016)CrossRefGoogle Scholar
  7. 7.
    Conca, T., et al.: Multidisciplinary collaboration in the treatment of patients with type 2 diabetes in primary care: Analysis using process mining. J. Med. Internet Res. 20(4), e127 (2018)CrossRefGoogle Scholar
  8. 8.
    Delias, P., Manolitzas, P., Grigoroudis, E., Matsatsinis, N.: Applying process mining to the emergency department. In: Encyclopedia of Business Analytics and Optimization, pp. 168–178. IGI Global (2014)Google Scholar
  9. 9.
    Feigin, V.L., et al.: Global burden of diseases, injuries and risk factors study 2013 and stroke experts writing group: global burden of stroke and risk factors in 188 countries, during 1990–2013: a systematic analysis for the global burden of disease study 2013. Lancet. Neurol. 15(9), 913–924 (2016)CrossRefGoogle Scholar
  10. 10.
    Fernandez-Llatas, C., Bayo, J.L., Martinez-Romero, A., Benedi, J.M., Traver, V.: Interactive pattern recognition in cardiovascular diseases management. a process mining approach. In: Proceedings of the IEEE International Conference on Biomedical and Health Informatics 2016, Las Vegas, EEUU (2016)Google Scholar
  11. 11.
    Fernandez-Llatas, C., Lizondo, A., Monton, E., Benedi, J.M., Traver, V.: Process mining methodology for health process tracking using real-time indoor location systems. Sensors (Basel, Switzerland) 15(12), 29821–29840 (2015)CrossRefGoogle Scholar
  12. 12.
    Fernandez-Llatas, C., Meneu, T., Traver, V., Benedi, J.M.: Applying evidence-based medicine in telehealth: an interactive pattern recognition approximation. Int. J. Environ. Res. Publ. Health 10(11), 5671–5682 (2013)CrossRefGoogle Scholar
  13. 13.
    Goodman, S.N.: Toward evidence-based medical statistics. 2: the Bayes factor. Ann. Intern. Med. 130(12), 1005–1013 (1999)CrossRefGoogle Scholar
  14. 14.
    Gustavsson, A., et al.: Cost of disorders of the brain in Europe 2010. Eur. Neuropsychopharmacol. J. Eur. Coll. Neuropsychopharmacol. 21(10), 718–779 (2011)CrossRefGoogle Scholar
  15. 15.
    Howard, G., Goff, D.C.: Population shifts and the future of stroke: forecasts of the future burden of stroke. Ann. N. Y. Acad. Sci. 1268, 14–20 (2012)CrossRefGoogle Scholar
  16. 16.
    Lazer, D., Kennedy, R., King, G., Vespignani, A.: The parable of Google flu: traps in big data analysis. Science 343(6176), 1203–1205 (2014)CrossRefGoogle Scholar
  17. 17.
    Mans, R., Reijers, H., van Genuchten, M., Wismeijer, D.: Mining processes in dentistry. In: Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium, IHI 2012, pp. 379–388. ACM, New York (2012)Google Scholar
  18. 18.
    Mans, R.S., van der Aalst, W.M.P., Vanwersch, R.J.B.: Process Mining in Healthcare: Evaluating and Exploiting Operational Healthcare Processes. SBPM. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-16071-9CrossRefGoogle Scholar
  19. 19.
    Murdoch, T.B., Detsky, A.S.: The inevitable application of big data to health care. JAMA 309(13), 1351–1352 (2013)CrossRefGoogle Scholar
  20. 20.
    Partington, A., Wynn, M., Suriadi, S., Ouyang, C., Karnon, J.: Process mining for clinical processes: a comparative analysis of four Australian hospitals. ACM Trans. Manage. Inf. Syst. 5(4), 19:1–19:18 (2015)CrossRefGoogle Scholar
  21. 21.
    Rebuge, l., Ferreira, D.R.: Business process analysis in healthcare environments: a methodology based on process mining. Inf. Syst. 37(2), 99–116 (2012)CrossRefGoogle Scholar
  22. 22.
    Rojas, E., Fernández-Llatas, C., Traver, V., Munoz-Gama, J., Sepúlveda, M., Herskovic, V., Capurro, D.: PALIA-ER: bringing question-driven process mining closer to the emergency room. In: 15th International Conference on Business Process Management (BPM 2017) (2017)Google Scholar
  23. 23.
    Rojas, E., Munoz-Gama, J., Sepúlveda, M., Capurro, D.: Process mining in healthcare: a literature review. J. Biomed. Inform. 61, 224–236 (2016)CrossRefGoogle Scholar
  24. 24.
    Rojas, E., Sepúlveda, M., Munoz-Gama, J., Capurro, D., Traver, V., Fernandez-Llatas, C.: Question-driven methodology for analyzing emergency room processes using process mining. Appl. Sci. 7(3), 302 (2017)CrossRefGoogle Scholar
  25. 25.
    Storm-Versloot, M.N., Ubbink, D.T., Kappelhof, J., Luitse, J.S.K.: Comparison of an informally structured triage system, the emergency severity index, and the manchester triage system to distinguish patient priority in the emergency department. Acad. Emerg. Med. 18(8), 822–829 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Carlos Fernandez-Llatas
    • 1
    Email author
  • Gema Ibanez-Sanchez
    • 1
  • Angeles Celda
    • 2
  • Jesus Mandingorra
    • 2
  • Lucia Aparici-Tortajada
    • 1
  • Antonio Martinez-Millana
    • 1
  • Jorge Munoz-Gama
    • 3
  • Marcos Sepúlveda
    • 3
  • Eric Rojas
    • 3
  • Víctor Gálvez
    • 3
  • Daniel Capurro
    • 4
  • Vicente Traver
    • 1
  1. 1.ITACAUniversitat Politècnica de ValènciaValenciaSpain
  2. 2.Hospital General de ValenciaValenciaSpain
  3. 3.School of EngineeringPontificia Universidad Católica de ChileSantiagoChile
  4. 4.School of MedicinePontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations