Advertisement

Characterization of Drug Use Patterns Using Process Mining and Temporal Abstraction Digital Phenotyping

  • Eric RojasEmail author
  • Daniel Capurro
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 342)

Abstract

Understanding and identifying executed patterns, activities and processes for patients of different characteristics provides medical experts a deep understanding of which tasks are critical in the provided care, and may help identify ways to improve them. However, extracting these events and data for patients with complex clinical phenotypes is not a trivial task. This paper provides an approach to identifying specific patient cohorts based on complex digital phenotypes as a starting point to apply process mining tools and techniques and identify patterns or process models. Using temporal abstraction-based digital phenotyping and pattern matching, we identified a cohort of patients with sepsis from the MIMIC II database, and then apply process mining techniques to discover medication use patterns. In the case study we present, the use of temporal abstraction digital phenotyping helped us discover a relevant patient cohort, aiding in the extraction of the data required to generate drug use patterns for medications of different types such as vasopressors, vasodilators and systemic antibacterial antibiotics. For sepsis patients, combining the use of temporal abstraction digital phenotyping and process mining tools and techniques, was proven to help extract accurate cohorts of patients for health care process mining.

Keywords

Process mining Digital phenotyping Drug use patterns 

References

  1. 1.
    Van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49851-4CrossRefGoogle Scholar
  2. 2.
    Boaz, D., Shahar, Y.: Idan: a distributed temporal-abstraction mediator for medical databases. In: Dojat, M., Keravnou, E.T., Barahona, P. (eds.) AIME 2003. LNCS (LNAI), vol. 2780, pp. 21–30. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-39907-0_3CrossRefGoogle Scholar
  3. 3.
    Bogarín, A., Romero, C., Cerezo, R., Sánchez-Santillán, M.: Clustering for improving educational process mining. In: Proceedings of the Fourth International Conference on Learning Analytics and Knowledge, pp. 11–15. ACM (2014)Google Scholar
  4. 4.
    Capurro, D., Barbe, M., Daza, C., Santa María, J., Trincado, J., Gomez, I.: ClinicalTime: identification of patients with acute kidney injury using temporal abstractions and temporal pattern matching. AMIA Summits Transl. Sci. Proc. 2015, 46 (2015)Google Scholar
  5. 5.
    Che, Z., Kale, D., Li, W., Bahadori, M.T., Liu, Y.: Deep computational phenotyping. In: Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 507–516. ACM (2015)Google Scholar
  6. 6.
    Clifford, G.D., Scott, D.J., Villarroel, M., et al.: User guide and documentation for the MIMIC II database. MIMIC-II database version 2(95) (2009)Google Scholar
  7. 7.
    Das, A.K., Tu, S.W., Purcell, G.P., Musen, M.A.: An extended SQL for temporal data management in clinical decision-support systems. In: Proceedings of the Annual Symposium on Computer Application in Medical Care, p. 128. American Medical Informatics Association (1992)Google Scholar
  8. 8.
    Daza, C., Santa Maria, J., Gomez, I., Barbe, M., Trincado, J., Capurro, D.: Phenotyping intensive care unit patients using temporal abstractions and temporal pattern matching. In: Proceedings of the 7th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, pp. 508–509. ACM (2016)Google Scholar
  9. 9.
    Drugs.com: Date source of drug information online (2018). https://www.drugs.com. 1 May 2018
  10. 10.
    Fernandez-Llatas, C., Lizondo, A., Monton, E., Benedi, J.M., Traver, V.: Process mining methodology for health process tracking using real-time indoor location systems. Sensors 15(12), 29821–29840 (2015)CrossRefGoogle Scholar
  11. 11.
    Gilberg, K., Laouri, M., Wade, S., Isonaka, S.: Analysis of medication use patterns: apparent overuse of antibiotics and underuse of prescription drugs for asthma, depression, and CHF. J. Manag. Care Pharm. 9(3), 232–237 (2003)Google Scholar
  12. 12.
    Günther, C., Rozinat, A.: Disco: discover your processes. BPM 940, 40–44 (2012)Google Scholar
  13. 13.
    Liao, K.P., et al.: Development of phenotype algorithms using electronic medical records and incorporating natural language processing. BMJ 350, h1885 (2015)CrossRefGoogle Scholar
  14. 14.
    Mans, R.S., van der Aalst, W.M.P., Vanwersch, R.J.B.: Process Mining in Healthcare: Evaluating and Exploiting Operational Healthcare Processes. SBPM. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-16071-9CrossRefGoogle Scholar
  15. 15.
    Nigrin, D.J., Kohane, I.S.: Temporal expressiveness in querying a time-stamp-based clinical database. JAMIA 7(2), 152–163 (2000)Google Scholar
  16. 16.
    O’Connor, M.J., Tu, S.W., Musen, M.A.: The Chronus II temporal database mediator. In: Proceedings of the AMIA Symposium, p. 567 (2002)Google Scholar
  17. 17.
    Osses, A.S., et al.: Business process analysis in advertising: an extension to a methodology based on process mining projects. In: 2016 35th International Conference of the Chilean Computer Science Society (SCCC), pp. 1–12. IEEE (2016)Google Scholar
  18. 18.
    Post, A.R., et al.: Temporal abstraction-based clinical phenotyping with Eureka! In: AMIA Annual Symposium Proceedings, vol. 2013, p. 1160. American Medical Informatics Association (2013)Google Scholar
  19. 19.
    Post, A., Harrison Jr., J.: Protempa: a method for specifying and identifying temporal sequences in retrospective data for patient selection. J. Am. Med. Inform. Assoc. 14(5), 674–683 (2007)CrossRefGoogle Scholar
  20. 20.
    Rebuge, Á., Ferreira, D.R.: Business process analysis in healthcare environments: a methodology based on process mining. Inf. Syst. 37(2), 99–116 (2012)CrossRefGoogle Scholar
  21. 21.
    Rojas, E., et al.: Palia-er: bringing question-driven process mining closer to the emergency room. In: Proceedings of the Business Process Management Conference 2018 (BPM 2018) Demo Track, Barcelona, Spain (2018)Google Scholar
  22. 22.
    Rojas, E., Munoz-Gama, J., Sepúlveda, M., Capurro, D.: Process mining in healthcare: a literature review. J. Biomed. Inform. 61, 224–236 (2016)CrossRefGoogle Scholar
  23. 23.
    Rojas, E., Sepúlveda, M., Munoz-Gama, J., Capurro, D., Traver, V., Fernandez-Llatas, C.: Question-driven methodology for analyzing emergency room processes using process mining. Appl. Sci. 7(3), 302 (2017)CrossRefGoogle Scholar
  24. 24.
    Saeed, M., et al.: Multiparameter intelligent monitoring in intensive care II (MIMIC-II): a public-access intensive care unit database. Crit. Care Med. 39(5), 952 (2011)CrossRefGoogle Scholar
  25. 25.
    Snodgrass, R.T.: The TSQL2 Temporal Query Language, vol. 330. Springer, New York (2012)zbMATHGoogle Scholar
  26. 26.
    Snodgrass, R.: The TSQL2 Temporal Query Language. Springer, London (1995).  https://doi.org/10.1007/978-1-4615-2289-8CrossRefzbMATHGoogle Scholar
  27. 27.
    Wei, W.Q., Teixeira, P.L., Mo, H., Cronin, R.M., Warner, J.L., Denny, J.C.: Combining billing codes, clinical notes, and medications from electronic health records provides superior phenotyping performance. JAMIA 23(e1), e20–e27 (2015)Google Scholar
  28. 28.
    Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible heuristics miner (FHM). In: 2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM) (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Internal Medicine Department, School of MedicinePontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations