Advertisement

Lipid Bilayers and Liposomes on Microfluidics Realm: Techniques and Applications

  • Fatih InciEmail author
Chapter

Abstract

Liposomes and lipid bilayer systems are one of the most ubiquitous structures in the living world, with complex structural features and a variety of biological functions in a constrained milieu. Redesigning and reprogramming these structures as biomimicking components will enable us to investigate basic biophysical and pharmacological processes within intra- and extracellular environments. Microfluidics, an enabling and disruptive technology, have greatly attracted this field by presenting unique capabilities, such as reduction in fluidic volumes, automation, and high-throughput, which have not been introduced with other technologies. In this chapter, a broad perspective and a variety of applications of microfluidic-associated methods were reviewed comprehensively.

Keywords

Lab-on-a-chip Micro and nanoscale technologies Microarray Microdroplet Bioprinting 

References

  1. 1.
    P. Walde, K. Cosentino, H. Engel, P. Stano, Giant vesicles: Preparations and applications. Chembiochem 11(7), 848 (2010)CrossRefGoogle Scholar
  2. 2.
    D.D. Lasic, The mechanism of vesicle formation. Biochem. J. 256(1), 1–11 (Nov. 1988)CrossRefGoogle Scholar
  3. 3.
    D. Van Swaay, A. Demello, Microfluidic methods for forming liposomes. Lab Chip 13(5), 752 (2013)CrossRefGoogle Scholar
  4. 4.
    D. Carugo, E. Bottaro, J. Owen, E. Stride, C. Nastruzzi, Liposome production by microfluidics: Potential and limiting factors. Sci. Rep. 6, 25876 (2016)CrossRefGoogle Scholar
  5. 5.
    P. Taylor, C. Xu, P.D.I. Fletcher, V.N. Paunov, A novel technique for preparation of monodisperse giant liposomes. Chem. Commun. 14, 1732 (2003)CrossRefGoogle Scholar
  6. 6.
    P. Taylor, C. Xu, P.D.I. Fletcher, V.N. Paunov, Fabrication of 2D arrays of giant liposomes on solid substrates by microcontact printing. Phys. Chem. Chem. Phys. 5, 4918 (2003)CrossRefGoogle Scholar
  7. 7.
    K. Kuribayashi, G. Tresset, P. Coquet, H. Fujita, S. Takeuchi, Electroformation of giant liposomes in microfluidic channels. Meas. Sci. Technol. 17, 3121 (2006)CrossRefGoogle Scholar
  8. 8.
    M. Le Berre, A. Yamada, L. Reck, Y. Chen, D. Baigl, Electroformation of giant phospholipid vesicles on a silicon substrate: Advantages of controllable surface properties. Langmuir 24(6), 2643 (2008)CrossRefGoogle Scholar
  9. 9.
    S. Aimon, J. Manzi, D. Schmidt, J.A.P. Larrosa, P. Bassereau, G.E.S. Toombes, Functional reconstitution of a voltage-gated potassium channel in giant unilamellar vesicles. PLoS One 6, e25529 (2011)CrossRefGoogle Scholar
  10. 10.
    V. Pereno et al., Electroformation of giant unilamellar vesicles on stainless steel electrodes. ACS Omega 2, 994 (2017)CrossRefGoogle Scholar
  11. 11.
    Y.C. Lin, K.S. Huang, J.T. Chiang, C.H. Yang, T.H. Lai, Manipulating self-assembled phospholipid microtubes using microfluidic technology. Sensors Actuators B Chem. 117, 464 (2006)CrossRefGoogle Scholar
  12. 12.
    F. Liu et al., The exosome total isolation chip. ACS Nano 11, 10712 (2017)CrossRefGoogle Scholar
  13. 13.
    L.G. Liang et al., An integrated double-filtration microfluidic device for detection of extracellular vesicles from urine for bladder cancer diagnosis. Methods Mol. Biol. 1660, 355 (2017)CrossRefGoogle Scholar
  14. 14.
    L.G. Liang et al., An integrated double-filtration microfluidic device for isolation, enrichment and quantification of urinary extracellular vesicles for detection of bladder cancer. Sci. Rep. 7, 46224 (2017)CrossRefGoogle Scholar
  15. 15.
    A. Jahn, W.N. Vreeland, M. Gaitan, L.E. Locascio, Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing. J. Am. Chem. Soc. 126, 2674 (2004)CrossRefGoogle Scholar
  16. 16.
    K. Funakoshi, H. Suzuki, S. Takeuchi, Lipid bilayer formation by contacting monolayers in a microfluidic device for membrane protein analysis. Anal. Chem. 78, 8169 (2006)CrossRefGoogle Scholar
  17. 17.
    P. Jönsson, M.P. Jonsson, F. Höök, Sealing of submicrometer wells by a shear-driven lipid bilayer. Nano Lett. 10, 1900 (2010)CrossRefGoogle Scholar
  18. 18.
    N. Malmstadt, M.A. Nash, R.F. Purnell, J.J. Schmidt, Automated formation of lipid-bilayer membranes in a microfluidic device. Nano Lett. 6, 1961 (2006)CrossRefGoogle Scholar
  19. 19.
    B. Schlicht, M. Zagnoni, Droplet-interface-bilayer assays in microfluidic passive networks. Sci. Rep. 5, 9951 (2015)CrossRefGoogle Scholar
  20. 20.
    S. Ota, H. Suzuki, S. Takeuchi, Microfluidic lipid membrane formation on microchamber arrays. Lab Chip 11, 2485 (2011)CrossRefGoogle Scholar
  21. 21.
    T. Osaki, S. Yoshizawa, R. Kawano, H. Sasaki, S. Takeuchi, Lipid-coated microdroplet array for in vitro protein synthesis. Anal. Chem. 83, 3186 (2011)CrossRefGoogle Scholar
  22. 22.
    J.C. Stachowiak, D.L. Richmond, T.H. Li, A.P. Liu, S.H. Parekh, D.A. Fletcher, Unilamellar vesicle formation and encapsulation by microfluidic jetting. Proc. Natl. Acad. Sci. 105, 4697 (2008)CrossRefGoogle Scholar
  23. 23.
    S.R. Kirchner et al., Membrane composition of jetted lipid vesicles: A Raman spectroscopy study. J. Biophotonics 5, 40 (2012)CrossRefGoogle Scholar
  24. 24.
    K. Kamiya, R. Kawano, T. Osaki, K. Akiyoshi, S. Takeuchi, Cell-sized asymmetric lipid vesicles facilitate the investigation of asymmetric membranes. Nat. Chem. 8, 881 (2016)CrossRefGoogle Scholar
  25. 25.
    R.K. Shah et al., Designer emulsions using microfluidics. Mater. Today 11, 18 (2008)CrossRefGoogle Scholar
  26. 26.
    E. Lorenceau, A.S. Utada, D.R. Link, G. Cristobal, M. Joanicot, D.A. Weitz, Generation of polymerosomes from double-emulsions. Langmuir 21, 9183 (2005)CrossRefGoogle Scholar
  27. 27.
    Y.C. Tan, K. Hettiarachchi, M. Siu, Y.R. Pan, A.P. Lee, Controlled microfluidic encapsulation of cells, proteins, and microbeads in lipid vesicles. J. Am. Chem. Soc. 128, 5656 (2006)CrossRefGoogle Scholar
  28. 28.
    L. Kam, S.G. Boxer, Formation of supported lipid bilayer composition arrays by controlled mixing and surface capture [19]. J.Am. Chem. Soc. 122, 12901 (2000)CrossRefGoogle Scholar
  29. 29.
    Y.-H.M. Chan, P. Lenz, S.G. Boxer, Kinetics of DNA-mediated docking reactions between vesicles tethered to supported lipid bilayers. Proc. Natl. Acad. Sci. 104, 18913 (2007)CrossRefGoogle Scholar
  30. 30.
    A. Ainla, I. Gözen, B. Hakonen, A. Jesorka, Lab on a Biomembrane: Rapid prototyping and manipulation of 2D fluidic lipid bilayers circuits. Sci. Rep. 3, 2743 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of RadiologyStanford University, School of Medicine, Canary Center at Stanford for Cancer Early DetectionPalo AltoUSA

Personalised recommendations