Advertisement

Investigation of Cell Interactions on Biomimetic Lipid Membranes

  • Abdulhalim Kılıç
  • Fatma Neşe KökEmail author
Chapter

Abstract

Cell membrane is one of the most exciting biointerfaces by which the cell, the smallest living unit, orchestrates its communication/interaction with its surrounding, vital for its survival. Design of suitable model systems with similar functionalities could prove themselves as useful platforms to focus on membrane-mediated cellular processes such as cell–cell and cell–surface interactions. Biomimetic lipid membranes are able to sustain the structure and fluidity of the cell membrane, and could mimic its dynamic complexity. In this chapter, an overview of cell interactions on biomimetic lipid membranes is given with a focus on supported lipid bilayers.

Keywords

Biointerface Supported lipid bilayers Cell adhesion Cell–cell interactions Extracellular matrix (ECM) Micropattern 

References

  1. 1.
    A.B. Harvey Lodish, S. Lawrence Zipursky, P. Matsudaira, D. Baltimore, J. Darnell, Biomembranes and cell architecture, in Molecular Cell Biology (4th edition) 2001, vol. 1084, (Elsevier BV: Freeman & Co, New York, NY, 2000), pp. 126–128Google Scholar
  2. 2.
    J.U.A. Clare O’Connor, J. Fairman, Essentials of Cell Biology (NPG Education, Cambridge, MA, 2010)Google Scholar
  3. 3.
    R.P. Richter, J.L.K. Him, A. Brisson, Supported lipid membranes. Mater. Today 6(11), 32–37 (2003)CrossRefGoogle Scholar
  4. 4.
    A. Kilic, F.N. Kok, Biomimetic lipid bilayers on solid surfaces: models for biological interactions. Surf. Innov. 4(3), 141–157 (2016)CrossRefGoogle Scholar
  5. 5.
    G.J. Hardy, R. Nayak, S. Zauscher, Model cell membranes: techniques to form complex biomimetic supported lipid bilayers via vesicle fusion. Curr. Opin. Colloid Interface Sci. 18(5), 448–458 (2013)CrossRefGoogle Scholar
  6. 6.
    A. Kilic et al., The effect of thiolated phospholipids on formation of supported lipid bilayers on gold substrates investigated by surface-sensitive methods. Colloids Surf. B Biointerfaces 160, 117–125 (2017)CrossRefGoogle Scholar
  7. 7.
    N.J. Cho et al., Employing an amphipathic viral peptide to create a lipid bilayer on Au and TiO2. J. Am. Chem. Soc. 129(33), 10050–10051 (2007)CrossRefGoogle Scholar
  8. 8.
    E. Reimhult et al., A multitechnique study of liposome adsorption on Au and lipid bilayer formation on SiO2. Langmuir 22(7), 3313–3319 (2006)CrossRefGoogle Scholar
  9. 9.
    V. Kiessling et al., Supported Lipid Bilayers: Development and Applications in Chemical Biology (Wiley Encyclopedia of Chemical Biology, Hoboken, 2008)CrossRefGoogle Scholar
  10. 10.
    J.T. Groves, L.K. Mahal, C.R. Bertozzi, Control of cell adhesion and growth with micropatterned supported lipid membranes. Langmuir 17(17), 5129–5133 (2001)CrossRefGoogle Scholar
  11. 11.
    S. Svedhem et al., In situ peptide-modified supported lipid bilayers for controlled cell attachment. Langmuir 19(17), 6730–6736 (2003)CrossRefGoogle Scholar
  12. 12.
    S.E. Choi et al., Positively charged supported lipid bilayer formation on gold surfaces for neuronal cell culture. Biointerphases 11(2), 021003 (2016)CrossRefGoogle Scholar
  13. 13.
    J. van Weerd, M. Karperien, P. Jonkheijm, Supported lipid bilayers for the generation of dynamic cell-material interfaces. Adv. Healthc. Mater. 4(18), 2743–2779 (2015)CrossRefGoogle Scholar
  14. 14.
    M. Andreasson-Ochsner et al., Single cell 3-D platform to study ligand mobility in cell-cell contact. Lab Chip 11(17), 2876–2883 (2011)CrossRefGoogle Scholar
  15. 15.
    R. Ghosh Moulick et al., Reconstitution of fusion proteins in supported lipid bilayers for the study of cell surface receptor-ligand interactions in cell-cell contact. Langmuir 32(14), 3462–3469 (2016)CrossRefGoogle Scholar
  16. 16.
    R. Berat et al., Peptide-presenting two-dimensional protein matrix on supported lipid bilayers: an efficient platform for cell adhesion. Biointerphases 2(4), 165–172 (2007)CrossRefGoogle Scholar
  17. 17.
    S. Vafaei, S.R. Tabaei, N.-J. Cho, Optimizing the performance of supported lipid bilayers as cell culture platforms based on extracellular matrix functionalization. ACS Omega 2(6), 2395–2404 (2017)CrossRefGoogle Scholar
  18. 18.
    A.S. Andersson et al., Cell adhesion on supported lipid bilayers. J. Biomed. Mater. Res. A 64(4), 622–629 (2003)CrossRefGoogle Scholar
  19. 19.
    L. Kam, S.G. Boxer, Cell adhesion to protein-micropatterned-supported lipid bilayer membranes. J. Biomed. Mater. Res. 55(4), 487–495 (2001)CrossRefGoogle Scholar
  20. 20.
    D. Thid et al., Supported phospholipid bilayers as a platform for neural progenitor cell culture. J. Biomed. Mater. Res. A 84(4), 940–953 (2008)CrossRefGoogle Scholar
  21. 21.
    D. Afanasenkau, A. Offenhausser, Positively charged supported lipid bilayers as a biomimetic platform for neuronal cell culture. Langmuir 28(37), 13387–13394 (2012)CrossRefGoogle Scholar
  22. 22.
    C. Satriano et al., Ferritin-supported lipid bilayers for triggering the endothelial cell response. Colloids Surf. B Biointerfaces 149, 48–55 (2017)CrossRefGoogle Scholar
  23. 23.
    B. Ananthanarayanan et al., Neural stem cell adhesion and proliferation on phospholipid bilayers functionalized with RGD peptides. Biomaterials 31(33), 8706–8715 (2010)CrossRefGoogle Scholar
  24. 24.
    D. Stroumpoulis et al., Cell adhesion and growth to peptide-patterned supported lipid membranes. Langmuir 23(7), 3849–3856 (2007)CrossRefGoogle Scholar
  25. 25.
    C.J. Huang et al., Type I collagen-functionalized supported lipid bilayer as a cell culture platform. Biomacromolecules 11(5), 1231–1240 (2010)CrossRefGoogle Scholar
  26. 26.
    P.Y. Tseng, Y.C. Chang, Tethered fibronectin liposomes on supported lipid bilayers as a prepackaged controlled-release platform for cell-based assays. Biomacromolecules 13(8), 2254–2262 (2012)CrossRefGoogle Scholar
  27. 27.
    B. Li, J. Chen, J.H. Wang, RGD peptide-conjugated poly(dimethylsiloxane) promotes adhesion, proliferation, and collagen secretion of human fibroblasts. J. Biomed. Mater. Res. A 79(4), 989–998 (2006)CrossRefGoogle Scholar
  28. 28.
    L. Sandrin et al., Cell adhesion through clustered ligand on fluid supported lipid bilayers. Org. Biomol. Chem. 8(7), 1531–1534 (2010)CrossRefGoogle Scholar
  29. 29.
    X. Zhu et al., Cell adhesion on supported lipid bilayers functionalized with RGD peptides monitored by using a quartz crystal microbalance with dissipation. Colloids Surf. B Biointerfaces 116, 459–464 (2014)CrossRefGoogle Scholar
  30. 30.
    B. Reiss et al., Adhesion kinetics of functionalized vesicles and mammalian cells: a comparative study†. Langmuir 19(5), 1816–1823 (2003)CrossRefGoogle Scholar
  31. 31.
    A.C. Da-Silva et al., Acoustic detection of cell adhesion on a quartz crystal microbalance. Biotechnol. Appl. Biochem. 59(6), 411–419 (2012)CrossRefGoogle Scholar
  32. 32.
    A. Kilic, F.N. Kok, Quartz crystal microbalance with dissipation as a biosensing platform to evaluate cell-surface interactions of osteoblast cells. Biointerphases 13(1), 011001 (2017)CrossRefGoogle Scholar
  33. 33.
    S.K. Akiyama, K.M. Yamada, The interaction of plasma fibronectin with fibroblastic cells in suspension. J. Biol. Chem. 260(7), 4492–4500 (1985)Google Scholar
  34. 34.
    L.A. Lautscham et al., Biomembrane-mimicking lipid bilayer system as a mechanically tunable cell substrate. Biomaterials 35(10), 3198–3207 (2014)CrossRefGoogle Scholar
  35. 35.
    R. Glazier, K. Salaita, Supported lipid bilayer platforms to probe cell mechanobiology. Biochim. Biophys. Acta 1859(9 Pt A), 1465–1482 (2017)CrossRefGoogle Scholar
  36. 36.
    S.F. Evans et al., Solid-supported lipid bilayers to drive stem cell fate and tissue architecture using periosteum derived progenitor cells. Biomaterials 34(8), 1878–1887 (2013)CrossRefGoogle Scholar
  37. 37.
    J. van Weerd et al., A microfluidic device with continuous ligand gradients in supported lipid bilayers to probe effects of ligand surface density and solution shear stress on pathogen adhesion. Adv. Mater. Interfaces 3(9), 1600055 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Istanbul Technical University, Molecular Biology-Genetics and Biotechnology ProgramIstanbulTurkey
  2. 2.Department of Molecular Biology and GeneticsIstanbul Technical UniversityIstanbulTurkey

Personalised recommendations