Advertisement

Optimal Location of FCL

  • Erik CuevasEmail author
  • Emilio Barocio Espejo
  • Arturo Conde Enríquez
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 822)

Abstract

As a consequence of increased electricity market, the distribution systems have been restated to consider alternative generation sources. These sources with a maximum capacity of less than 100 MW are defined as distributed generation (GD). Most DGs are usually connected to the electrical network without planned and dispatched control, since traditional distribution systems were not designed to consider any other generation sources.

References

  1. 1.
    S.B. Naderi, M. Jafari, M. Tarafdar Hagh, Parallel-resonance-type fault current limiter. IEEE Trans. Ind. Electron. 60(7), 2538–2546 (2013)CrossRefGoogle Scholar
  2. 2.
    W. Fei, Y. Zhang, A Novel IGCT-based half-controlled bridge type fault current limiter, in 2006 CES/IEEE 5th International Power Electronics and Motion Control Conference, vol. 2 (2006), pp. 1–5Google Scholar
  3. 3.
    H. Schmitt, Fault current limiters report on the activities on CIGRE WG A3.16, in 2006 IEEE Power Engineering Society General Meeting, vol. 16 (2006), p. 5Google Scholar
  4. 4.
    M.M.R. Ahmed, Comparison of the performance of two solid state fault current limiters in the distribution network, in 4th IET International Conference on Power Electronics, Machines and Drives (PEMD 2008) (2008), pp. 772–776Google Scholar
  5. 5.
    Y.S. Cha, Z. Yang, L.R. Turner, R.B. Poeppel, Analysis of a passive superconducting fault current limiter. IEEE Trans. Appl. Supercond. 8(1), 20–25 (1998)CrossRefGoogle Scholar
  6. 6.
    C.W. A3.10, Fault Current Limiters Report on the Activities of CIGRE WG A3.10 (2006)Google Scholar
  7. 7.
    W. Group Application and Feasibility of Fault Current Limiters in Power Systems, no. June. CIGRE (2012)Google Scholar
  8. 8.
    M. Barzegari, A.N. Fard, M.M. Hamidi, A.J. Shahrood, Optimal coordination of directional overcurrent relays in the presence of distributed generation using FCLs. IEEE Int. Energy Conf. 2010, 826–829 (2010)Google Scholar
  9. 9.
    H. Bahramian Habil, E. Azad-Farsani, H. Askarian Abyaneh, A novel method for optimum fault current limiter placement using particle swarm optimization Algorithm, Int. Trans. Electr. Energy Syst. 25(10), 2124–2132 (2015)CrossRefGoogle Scholar
  10. 10.
    J.H. Teng, C.N. Lu, Optimum fault current limiter placement with search space reduction technique. IET Gener. Transm. Distrib. 4(4), 485 (2010)CrossRefGoogle Scholar
  11. 11.
    J.-H. Teng, C.-N. Lu, Optimum fault current limiter placement, in 2007 International Conference on Intelligent Systems Applications to Power Systems (2007), pp. 1–6Google Scholar
  12. 12.
    D.R. Arikkat, P. Reji, Location optimization of fault current limiter, in Proceedings of International Conference on Material and Future—Innovative Material Production of Applications ICFM 2013, (2013), pp. 484–487Google Scholar
  13. 13.
    W.-W. Kim, S.-Y. Kim, J.-O. Kim, SFCL location selection considering reliability indices. World Acad. Sci. Eng. Technol. 4(9), 405–409 (2010)Google Scholar
  14. 14.
    G. Cakal, F. Gül, M. Bagriyanik, The effect of fault current limiters on distribution systems with wind turbine generators 1. Int. J. Renew. Energy Res. 3(1), 1–6 (2013)Google Scholar
  15. 15.
    M. Nagata, K. Tanaka, H. Taniguchi, FCL location selection in large scale power system. IEEE Trans. Appl. Supercond. 11(1), 2489–2494 (2001)CrossRefGoogle Scholar
  16. 16.
    P. Yu, B. Venkatesh, A. Yazdani, B.N. Singh, Optimal location and sizing of fault current limiters in mesh networks using iterative mixed integer nonlinear programming. IEEE Trans. Power Syst. 31(6), 4776–4783 (2016)CrossRefGoogle Scholar
  17. 17.
    A. Golzarfar, A.R. Sedighi, A. Asadi, Optimal placement and sizing of fault current limiter in a real network: a case study. Int. J. Eng. 28(3), 402–409 (2015)Google Scholar
  18. 18.
    K. Hongesombut, Y. Mitani, K. Tsuji, Optimal location assignment and design of superconducting fault current limiters applied to loop power systems. IEEE Trans. Appl. Supercond. 13(2), 1828–1831 (2003)CrossRefGoogle Scholar
  19. 19.
    S.A.A. Shahriari, A.Y. Varjani, M.R. Haghifam, Cost reduction of distribution network protection in presence of distributed generation using optimized fault current limiter allocation. Int. J. Electr. Power Energy Syst. 43(1), 1453–1459 (2012)CrossRefGoogle Scholar
  20. 20.
    K. Mazlumi, Optimal protection coordination for micro grids with grid connected and islanded capability, Int. J. “Tech. Phys. Probl. Eng. 6, 204–209 (2014)Google Scholar
  21. 21.
    A. Elmitwally, E. Gouda, S. Eladawy, Optimal allocation of fault current limiters for sustaining overcurrent relays coordination in a power system with distributed generation. Alexandria Eng. J. 54(4), 1077–1089 (2015)CrossRefGoogle Scholar
  22. 22.
    A. Elmitwally, E. Gouda, S. Eladawy, Optimal application of fault current limiters for assuring overcurrent relays coordination with distributed generations. Arab. J. Sci. Eng. 41(9), 3381–3397 (2016)CrossRefGoogle Scholar
  23. 23.
    S. Zare, A. Khazali, S.M. Hashemi, F. Katebi, R. Khalili, Fault current limiter optimal placement by harmony search algorithm, in 22nd International Conference and Exhibition on Electricity Distribution, vol. 124 (2013), pp. 10–13Google Scholar
  24. 24.
    W.G. A3.16, Guideline of the Impacts of Fault Current Limiting Devices on Protection Systems, no. February. CIGRE (2008)Google Scholar
  25. 25.
    H. Arai, M. Inaba, T. Ishigohka, H. Tanaka, K. Arai, M. Furuse, M. Umeda, Fundamental characteristics of superconducting fault current limiter using LC resonance circuit. IEEE Trans. Appl. Supercond. 16(2), 642–645 (2006)CrossRefGoogle Scholar
  26. 26.
    S. Zissu, D. Shein, The influence of fault current limiting in power systems on transient recovery voltage, in Proceedings of 19th Convention of Electrical and Electronics Engineers in Israel (1996), pp. 479–482Google Scholar
  27. 27.
    H.G. Sarmiento, A fault current limiter based on an LC resonant circuit: design, scale model and prototype field tests, in 2007 iREP Symposium—Bulk Power System Dynamic and Control—VII. Revitalizing Operational Reliability (2007), pp. 1–5, 2007Google Scholar
  28. 28.
    C.S. Chang, P.C. Loh, Designs synthesis of resonant fault current limiter for voltage sag mitigation and current limitation, in 2000 IEEE Power Engineering Society Winter Meeting. Conference Proceedings, vol. 4 (2000), pp. 2482–2487Google Scholar
  29. 29.
    G. Chen, D. Jiang, Z. Lu, Z. Wu, A new proposal for solid state fault current limiter and its control strategies, in IEEE Power Engineering Society General Meeting, vol. 2 (2004) pp. 1468–1473Google Scholar
  30. 30.
    H. Javadi, Fault current limiter using a series impedance combined with bus sectionalizing circuit breaker. Int. J. Electr. Power Energy Syst. 33(3), 731–736 (2011)CrossRefGoogle Scholar
  31. 31.
    F. Tosato, S. Quaia, Reducing voltage sags through fault current limitation. IEEE Trans. Power Deliv. 16(1), 12–17 (2001)CrossRefGoogle Scholar
  32. 32.
    W.G. A3.10, Fault Current Limiters in Electrical Medium and High Voltage Systems (2003)Google Scholar
  33. 33.
    M.A. Hannan, A. Mohamed, Performance evaluation of solid state fault current limiters in electric distribution system, in Proceedings Student Conference on Research and Development, 2003. SCORED 2003 (2003), pp. 245–250Google Scholar
  34. 34.
    X. Zhang, P. Liu, The research of resonant fault current limiter based on electromagnetic transient simulation, in IEEE PES Innovations in Smart Grid Technologies (2012) pp. 1–4Google Scholar
  35. 35.
    IEEE Std C37.112-1996, IEEE Standard Inverse-Time Characteristic Equations for Overcurrent Relays. Power Syst. Relaying Comm. IEE Power Eng. Soc. (1996)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Erik Cuevas
    • 1
    Email author
  • Emilio Barocio Espejo
    • 2
  • Arturo Conde Enríquez
    • 3
  1. 1.Departamento de Electrónica, CUCEIUniversidad de GuadalajaraGuadalajaraMexico
  2. 2.CUCEIUniversidad de GuadalajaraGuadalajaraMexico
  3. 3.Universidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico

Personalised recommendations