Advertisement

Operative Equipment and Insufflator Options

  • William Frederick Anthony Miles
  • Muhammad Shafique Sajid
  • Eleni Andriopoulou
Chapter

Abstract

Transanal surgery has always been limited by the restriction of access, illumination, inflation, and instruments. Recent developments in transanal access and endoscopic cameras have changed transanal surgery forever. It is now quite practical to operate in the rectum or the para-rectal spaces with ultrahigh-definition vision and even robotic-assisted instrumentation. While there are currently no data supporting the robot for transanal surgery, it is quite likely that this will happen in the future.

The problems of insufflation remain and in particular maintaining a steady intraluminal pressure. Current standard laparoscopic insufflators were not designed to work in the rectum and consequently their control algorithms can become unstable and lead to both very high and very low pressures. In this chapter, we will explore the history of transanal surgery from the point of view of the instruments and insufflators and use this to describe the current developments in this field.

Keywords

Transanal minimally invasive surgery Transanal access Sigmoidoscopy Transmission electron microscopy (TEM) Insufflation 

References

  1. 1.
    Hollerius J, Jacotius D. Magni Hippocratis Coaca Præsagia. ... Cum interpretatione et commentariis J. Hollerii ... nunc primum D. Jacotii ... opera in lucem editis. Eiusdem D. Jacotii ... co\0303mentariorum ad idem opus, libri tredecim, tribus sectionibus distincti, in quibus symptomatum omnium, quæ in ægris apparent, causæ, vires, et significationes demonstrantur. ... Index rerum: Lugduni; 1576.Google Scholar
  2. 2.
    Adams F. Genuine works of hippocrates. [S.l.]: Robert E Krieger Publishing; 1972.Google Scholar
  3. 3.
    Vilardell F. Digestive endoscopy in the second millennium: from the Lichleiter to echoendoscopy. Stuttgart: Thieme; 2006.Google Scholar
  4. 4.
    Leong KJ, Evans J, Davies MM, Scott A, Lidder P. Transanal endoscopic surgery: past, present and future. Br J Hosp Med (Lond). 2016;77(7):394–402.CrossRefGoogle Scholar
  5. 5.
    Webster JG. Encyclopedia of medical devices & instrumentation. 2nd ed. Hoboken/Chichester: Wiley-Interscience/John Wiley, distributor; 2006.CrossRefGoogle Scholar
  6. 6.
    Adloff M, Ollier JC, Arnaud JP, Py JM. Posterior approach to the rectum. Technic, indications, complications. Apropos of 41 cases. J Chir (Paris). 1983;120(3):205–10.Google Scholar
  7. 7.
    Prasad ML, Nelson R, Hambrick E, Abcarian H. York Mason procedure for repair of postoperative rectoprostatic urethral fistula. Dis Colon Rectum. 1983;26(11):716–20.CrossRefGoogle Scholar
  8. 8.
    Nambiar R. Transsacral approach to the rectum. Ann Acad Med Singap. 1987;16(3):462–5.PubMedGoogle Scholar
  9. 9.
    Spaner SJ, Warnock GL. A brief history of endoscopy, laparoscopy, and laparoscopic surgery. J Laparoendosc Adv Surg Tech A. 1997;7(6):369–73.CrossRefGoogle Scholar
  10. 10.
    Atallah S, Keller D. Why the conventional parks Transanal excision for early stage rectal Cancer should be abandoned. Dis Colon Rectum. 2015;58(12):1211–4.CrossRefGoogle Scholar
  11. 11.
    de Graaf EJ, Burger JW, van Ijsseldijk AL, Tetteroo GW, Dawson I, Hop WC. Transanal endoscopic microsurgery is superior to transanal excision of rectal adenomas. Color Dis. 2011;13(7):762–7.CrossRefGoogle Scholar
  12. 12.
    Hirschowitz BI. A personal history of the fiberscope. Gastroenterology. 1979;76(4):864–9.PubMedGoogle Scholar
  13. 13.
    Tsiamoulos ZP, Warusavitarne J, Faiz O, Castello-Cortes A, Elliott T, Peake ST, et al. A new instrumental platform for trans-anal submucosal endoscopic resection (TASER). Gut. 2015;64(12):1844–6.CrossRefGoogle Scholar
  14. 14.
    Tsiamoulos ZP, Warusavitarne J, Saunders BP. Transanal submucosal endoscopic resection: a new endosurgical approach to the resection of giant rectal lesions. Endoscopy. 2014;46(Suppl 1 UCTN):E401–2.PubMedGoogle Scholar
  15. 15.
    Soriani P, Tontini GE, Neumann H, de Nucci G, De Toma D, Bruni B, et al. Endoscopic full-thickness resection for T1 early rectal cancer: a case series and video report. Endosc Int Open. 2017;5(11):E1081–E6.CrossRefGoogle Scholar
  16. 16.
    Phee SJ, Low SC, Huynh VA, Kencana AP, Sun ZL, Yang K. Master and slave transluminal endoscopic robot (MASTER) for natural orifice transluminal endoscopic surgery (NOTES). Conf Proc IEEE Eng Med Biol Soc. 2009;2009:1192–5.PubMedGoogle Scholar
  17. 17.
    Buess G, Theiss R, Hutterer F, Pichlmaier H, Pelz C. Holfeld T, et al. [Transanal endoscopic surgery of the rectum - testing a new method in animal experiments]. Leber Magen Darm. 1983;13(2):73–7.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Lee L, Althoff A, Edwards K, Albert MR, Atallah SB, Hunter IA, et al. Outcomes of closed versus open defects after local excision of rectal neoplasms: a multi-institutional matched analysis. Dis Colon Rectum. 2018;61(2):172–8.CrossRefGoogle Scholar
  19. 19.
    de Graaf EJ, Doornebosch PG, Tetteroo GW, Geldof H, Hop WC. Transanal endoscopic microsurgery is feasible for adenomas throughout the entire rectum: a prospective study. Dis Colon Rectum. 2009;52(6):1107–13.CrossRefGoogle Scholar
  20. 20.
    Serra-Aracil X, Mora-Lopez L, Alcantara-Moral M, Caro-Tarrago A, Navarro-Soto S. Transanal endoscopic microsurgery with 3-D (TEM) or high-definition 2-D transanal endoscopic operation (TEO) for rectal tumors. A prospective, randomized clinical trial. Int J Color Dis. 2014;29(5):605–10.CrossRefGoogle Scholar
  21. 21.
    Bretagnol F, Merrie A, George B, Warren BF, Mortensen NJ. Local excision of rectal tumours by transanal endoscopic microsurgery. Br J Surg. 2007;94(5):627–33.CrossRefGoogle Scholar
  22. 22.
    Bretagnol F, Rullier E, George B, Warren BF, Mortensen NJ. Local therapy for rectal cancer: still controversial? Dis Colon Rectum. 2007;50(4):523–33.CrossRefGoogle Scholar
  23. 23.
    Clancy C, Burke JP, Albert MR, O’Connell PR, Winter DC. Transanal endoscopic microsurgery versus standard transanal excision for the removal of rectal neoplasms: a systematic review and meta-analysis. Dis Colon Rectum. 2015;58(2):254–61.CrossRefGoogle Scholar
  24. 24.
    Doornebosch PG, Gosselink MP, Neijenhuis PA, Schouten WR, Tollenaar RA, de Graaf EJ. Impact of transanal endoscopic microsurgery on functional outcome and quality of life. Int J Color Dis. 2008;23(7):709–13.CrossRefGoogle Scholar
  25. 25.
    Bignell MB, Ramwell A, Evans JR, Dastur N, Simson JN. Complications of transanal endoscopic microsurgery (TEMS): a prospective audit. Color Dis. 2010;12(7 Online):e99–103.Google Scholar
  26. 26.
    Whitehouse PA, Tilney HS, Armitage JN, Simson JN. Transanal endoscopic microsurgery: risk factors for local recurrence of benign rectal adenomas. Color Dis. 2006;8(9):795–9.CrossRefGoogle Scholar
  27. 27.
    Lee L, Edwards K, Hunter IA, Hartley JE, Atallah SB, Albert MR, et al. Quality of local excision for rectal neoplasms using Transanal endoscopic microsurgery versus Transanal minimally invasive surgery: a multi-institutional matched analysis. Dis Colon Rectum. 2017;60(9):928–35.CrossRefGoogle Scholar
  28. 28.
    Whiteford MH, Denk PM, Swanström LL. Feasibility of radical sigmoid colectomy performed as natural orifice transluminal endoscopic surgery (NOTES) using transanal endoscopic microsurgery. Surg Endosc. 2007;21(10):1870–4. Epub 2007 Aug 21; Liyanage C, Ramwell A, Harris GJ, Levy BF, Simson JN. Transanal endoscopic microsurgery: a new technique for completion proctectomy. Color Dis 2013;15(9):e542–7.CrossRefGoogle Scholar
  29. 29.
    Sylla P, Rattner DW, Delgado S, Lacy AM. NOTES transanal rectal cancer resection using transanal endoscopic microsurgery and laparoscopic assistance. Surg Endosc. 2010;24(5):1205–10.CrossRefGoogle Scholar
  30. 30.
    Atallah S, Albert M, Larach S. Transanal minimally invasive surgery: a giant leap forward. Surg Endosc. 2010;24(9):2200–5.CrossRefGoogle Scholar
  31. 31.
    Kim MJ, Park JW, Ha HK, Jeon BG, Shin R, Ryoo SB, et al. Initial experience of transanal total mesorectal excision with rigid or flexible transanal platforms in cadavers. Surg Endosc. 2016;30(4):1640–7.CrossRefGoogle Scholar
  32. 32.
    Markar SR, Karthikesalingam A, Thrumurthy S, Muirhead L, Kinross J, Paraskeva P. Single-incision laparoscopic surgery (SILS) vs. conventional multiport cholecystectomy: systematic review and meta-analysis. Surg Endosc. 2012;26(5):1205–13.CrossRefGoogle Scholar
  33. 33.
    Hompes R, Mortensen N, Cahill RA. Transanal endoscopic surgery using single access and standard laparoscopic instrumentation. Minerva Gastroenterol Dietol. 2012;58(3):273–81.PubMedGoogle Scholar
  34. 34.
    Hompes R, Ris F, Cunningham C, Mortensen NJ, Cahill RA. Transanal glove port is a safe and cost-effective alternative for transanal endoscopic microsurgery. Br J Surg. 2012;99(10):1429–35.CrossRefGoogle Scholar
  35. 35.
    Ahmad NZ, Ahmed A. Rigid or flexible sigmoidoscopy in colorectal clinics? Appraisal through a systematic review and meta-analysis. J Laparoendosc Adv Surg Tech A. 2012;22(5):479–87.CrossRefGoogle Scholar
  36. 36.
    Takahashi T, Zarate X, Velasco L, Mass W, Garcia-Osogobio S, Jimenez R, et al. Rigid rectosigmoidoscopy: still a well-tolerated diagnostic tool. Rev Investig Clin. 2003;55(6):616–20.Google Scholar
  37. 37.
    Ayantunde AA, Unluer Z. Increasing trend in retained rectal foreign bodies. World J Gastrointest Surg. 2016;8(10):679–84.CrossRefGoogle Scholar
  38. 38.
    Zimmerman DD, Briel JW, Gosselink MP, Schouten WR. Anocutaneous advancement flap repair of transsphincteric fistulas. Dis Colon Rectum. 2001;44(10):1474–80.CrossRefGoogle Scholar
  39. 39.
    Carriero A, Dal Borgo P, Pucciani F. Stapled mucosal prolapsectomy for haemorrhoidal prolapse with lone star retractor system. Tech Coloproctol. 2001;5(1):41–6.CrossRefGoogle Scholar
  40. 40.
    Atallah S, Gonzalez P, Chadi S, Hompes R, Knol J. Operative vectors, anatomic distortion, fluid dynamics and the inherent effects of pneumatic insufflation encountered during transanal total mesorectal excision. Tech Coloproctol. 2017;21(10):783–94.CrossRefGoogle Scholar
  41. 41.
    Araujo SE, Crawshaw B, Mendes CR, Delaney CP. Transanal total mesorectal excision: a systematic review of the experimental and clinical evidence. Tech Coloproctol. 2015;19(2):69–82.CrossRefGoogle Scholar
  42. 42.
    Galipeau J, Cobey KD, Barbour V, Baskin P, Bell-Syer S, Deeks J, et al. An international survey and modified Delphi process revealed editors’ perceptions, training needs, and ratings of competency-related statements for the development of core competencies for scientific editors of biomedical journals. F1000Res. 2017;6:1634.CrossRefGoogle Scholar
  43. 43.
    Adamina M, Buchs NC, Penna M, Hompes R, Group SGCCE. St.Gallen consensus on safe implementation of transanal total mesorectal excision. Surg Endosc. 2018;32(3):1091–103.CrossRefGoogle Scholar
  44. 44.
    Atallah S. Robotic transanal minimally invasive surgery for local excision of rectal neoplasms. Br J Surg. 2014;101:578–81.CrossRefGoogle Scholar
  45. 45.
    Atallah SB, Albert MR, deBeche-Adams TH, Larach SW. Robotic TransAnal minimally invasive surgery in a cadaveric model. Tech Coloproctol. 2011;15(4):461–4.CrossRefGoogle Scholar
  46. 46.
    Kuo LJ, Ngu JC, Tong YS, Chen CC. Combined robotic transanal total mesorectal excision (R-taTME) and single-site plus one-port (R-SSPO) technique for ultra-low rectal surgery-initial experience with a new operation approach. Int J Color Dis. 2017;32(2):249–54.CrossRefGoogle Scholar
  47. 47.
    Atallah S, Martin-Perez B, Parra-Davila E, deBeche-Adams T, Nassif G, Albert M, et al. Robotic transanal surgery for local excision of rectal neoplasia, transanal total mesorectal excision, and repair of complex fistulae: clinical experience with the first 18 cases at a single institution. Tech Coloproctol. 2015;19(7):401–10.CrossRefGoogle Scholar
  48. 48.
    Atallah S, Quinteros F, Martin-Perez B, Larach S. Robotic transanal surgery for local excision of rectal neoplasms. J Robot Surg. 2014;8(2):193–4.CrossRefGoogle Scholar
  49. 49.
    Atallah S, Martin-Perez B, Pinan J, Quinteros F, Schoonyoung H, Albert M, et al. Robotic transanal total mesorectal excision: a pilot study. Tech Coloproctol. 2014;18(11):1047–53.CrossRefGoogle Scholar
  50. 50.
    Atallah S, Nassif G, Polavarapu H, deBeche-Adams T, Ouyang J, Albert M, et al. Robotic-assisted transanal surgery for total mesorectal excision (RATS-TME): a description of a novel surgical approach with video demonstration. Tech Coloproctol. 2013;17(4):441–7.CrossRefGoogle Scholar
  51. 51.
    Atallah S. Assessment of a flexible robotic system for endoluminal applications and transanal total mesorectal excision (taTME): could this be the solution we have been searching for? Tech Coloproctol. 2017;21(10):809–14.CrossRefGoogle Scholar
  52. 52.
    Alkatout I, Schollmeyer T, Hawaldar NA, Sharma N, Mettler L. Principles and safety measures of electrosurgery in laparoscopy. JSLS. 2012;16(1):130–9.CrossRefGoogle Scholar
  53. 53.
    Beasley SW. Monopolar diathermy dissection made easy. ANZ J Surg. 2008;78(12):1119–21.CrossRefGoogle Scholar
  54. 54.
    Okhunov Z, Yoon R, Lusch A, Spradling K, Suarez M, Kaler KS, et al. Evaluation and comparison of contemporary energy-based surgical vessel sealing devices. J Endourol. 2018;32(4):329–37.CrossRefGoogle Scholar
  55. 55.
    Cengel YA, Boles MA. Thermodynamics: an engineering approach. 2nd ed. New York/London: McGraw-Hill; 1994.Google Scholar
  56. 56.
    Annamalai K, Puri IK, Jog MA. Advanced thermodynamics engineering. 2nd ed. Boca Raton: CRC Press; 2011.Google Scholar
  57. 57.
    Becker C, Plymale MA, Wennergren J, Totten C, Stigall K, Roth JS. Compliance of the abdominal wall during laparoscopic insufflation. Surg Endosc. 2017;31(4):1947–51.CrossRefGoogle Scholar
  58. 58.
    Frangenheim H. A new insufflation apparatus for the establishment of pneumoperitoneum in celioscopy. Geburtshilfe Frauenheilkd. 1964;24:950–3.PubMedGoogle Scholar
  59. 59.
    Massouras HG. Presentation of an insufflator-instillator and the use of it. Fertil Steril. 1970;21(5):407–10.CrossRefGoogle Scholar
  60. 60.
    Jacobs VR, Morrison JE, Mundhenke C, Golombeck K, Jonat W. Intraoperative evaluation of laparoscopic insufflation technique for quality control in the OR. JSLS. 2000;4(3):189–95.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Vlot J, Wijnen R, Stolker RJ, Bax K. Optimizing working space in porcine laparoscopy: CT measurement of the effects of intra-abdominal pressure. Surg Endosc. 2013;27(5):1668–73.CrossRefGoogle Scholar
  62. 62.
    Rosenberg J, Herring WJ, Blobner M, Mulier JP, Rahe-Meyer N, Woo T, et al. Deep neuromuscular blockade improves laparoscopic surgical conditions: a randomized, controlled study. Adv Ther. 2017;34(4):925–36.CrossRefGoogle Scholar
  63. 63.
    Staehr-Rye AK, Rasmussen LS, Rosenberg J, Juul P, Gätke MR. Optimized surgical space during low-pressure laparoscopy with deep neuromuscular blockade. Dan Med J. 2013;60(2):A4579.PubMedGoogle Scholar
  64. 64.
    Waheed A, Miles A, Kelly J, Monson JRT, Motl JS, Albert M. Insufflation stabilization bag (ISB): a cost-effective approach for stable pneumorectum using a modified CO. Tech Coloproctol. 2017;21(11):897–900.CrossRefGoogle Scholar
  65. 65.
    Litynski GS. Kurt Semm and an automatic insufflator. JSLS. 1998;2(2):197–200.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Borten M, Walsh AK, Friedman EA. Variations in gas flow of laparoscopic insufflators. Obstet Gynecol. 1986;68(4):522–6.PubMedGoogle Scholar
  67. 67.
    Moss MC, Bircher MD. Volume changes within the true pelvis during disruption of the pelvic ring–where does the haemorrhage go? Injury. 1996;27(Suppl 1):S-A21–3.CrossRefGoogle Scholar
  68. 68.
    Bucur P, Hofmann M, Menhadji A, Abedi G, Okhunov Z, Rinehart J, et al. Comparison of pneumoperitoneum stability between a Valveless trocar system and conventional insufflation: a prospective randomized trial. Urology. 2016;94:274–80.CrossRefGoogle Scholar
  69. 69.
    Beebe DS, Zhu S, Kumar MV, Komanduri V, Reichert JA, Belani KG. The effect of insufflation pressure on CO(2) pneumoperitoneum and embolism in piglets. Anesth Analg. 2002;94(5):1182–7.CrossRefGoogle Scholar
  70. 70.
    Derouin M, Couture P, Boudreault D, Girard D, Gravel D. Detection of gas embolism by transesophageal echocardiography during laparoscopic cholecystectomy. Anesth Analg. 1996;82(1):119–24.PubMedGoogle Scholar
  71. 71.
    Nagao K, Reichert J, Beebe DS, Fowler JM, Belani KG. Carbon dioxide embolism during laparoscopy: effect of insufflation pressure in pigs. JSLS. 1999;3(2):91–6.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Reichert JA, Nagao K, Vinekar CV, Beebe DS, Fowler M, Belani KG. Carbon dioxide gas embolism in the experimental animal. J Am Assoc Gynecol Laparosc. 1996;3(4, Supplement):S41–2.PubMedGoogle Scholar
  73. 73.
    Staffieri F, Lacitignola L, De Siena R, Crovace A. A case of spontaneous venous embolism with carbon dioxide during laparoscopic surgery in a pig. Vet Anaesth Analg. 2007;34(1):63–6.CrossRefGoogle Scholar
  74. 74.
    Park EY, Kwon JY, Kim KJ. Carbon dioxide embolism during laparoscopic surgery. Yonsei Med J. 2012;53(3):459–66.CrossRefGoogle Scholar
  75. 75.
    Pandia MP, Bithal PK, Dash HH, Chaturvedi A. Comparative incidence of cardiovascular changes during venous air embolism as detected by transesophageal echocardiography alone or in combination with end tidal carbon dioxide tension monitoring. J Clin Neurosci. 2011;18(9):1206–9.CrossRefGoogle Scholar
  76. 76.
    Lin TY, Chiu KM, Wang MJ, Chu SH. Carbon dioxide embolism during endoscopic saphenous vein harvesting in coronary artery bypass surgery. J Thorac Cardiovasc Surg. 2003;126(6):2011–5.CrossRefGoogle Scholar
  77. 77.
    Kim CS, Kim JY, Kwon JY, Choi SH, Na S, An J, et al. Venous air embolism during total laparoscopic hysterectomy: comparison to total abdominal hysterectomy. Anesthesiology. 2009;111(1):50–4.CrossRefGoogle Scholar
  78. 78.
    Berger T, Silva RV, Marui AS, Cicarelli DD. Carbon dioxide embolism during laparoscopic surgery: case report. Rev Bras Anestesiol. 2005;55(1):87–9.CrossRefGoogle Scholar
  79. 79.
    Seong CL, Choi EJ, Song SO. Re-insufflation after deflation of a pneumoperitoneum is a risk factor for CO(2) embolism during laparoscopic prostatectomy – a case report. Korean J Anesthesiol. 2010;59(Suppl):S201–6.Google Scholar
  80. 80.
    Jacobs VR, Morrison JE. The real intraabdominal pressure during laparoscopy: comparison of different insufflators. J Minim Invasive Gynecol. 2007;14(1):103–7.CrossRefGoogle Scholar
  81. 81.
    Jacobs VR, Morrison JE, Paepke S, Fischer T, Kiechle M. Three-dimensional model for gas flow, resistance, and leakage-dependent nominal pressure maintenance of different laparoscopic insufflators. J Minim Invasive Gynecol. 2006;13(3):225–30.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • William Frederick Anthony Miles
    • 1
  • Muhammad Shafique Sajid
    • 1
  • Eleni Andriopoulou
    • 1
  1. 1.Department of Digestive DiseaseThe Royal Sussex County Hospital, Brighton and Sussex University Hospitals NHS TrustBrightonUK

Personalised recommendations