Advertisement

Teaming up with Artificial Intelligence: The Human in the Loop of Serious Game Pathfinding Algorithms

  • Michael D. Kickmeier-RustEmail author
  • Andreas Holzinger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11385)

Abstract

Serious games’ success depends on its capabilities to engage learners and to provide them with personalized gaming and learning experiences. Therefore, theoretically sound mechanisms for gaining a certain level of understanding of learning and gaming processes by the game is crucial. Consequently, AI and machine learning technologies increasingly enter the field. These technologies often fail, however, since serious games either pose highly complex problems (combining gaming and learning process) or do not provide the extensive data bases that would be required. One solution might be allowing human intelligence or intuition influence AI processes. In the present study, we investigated pathfinding algorithms with and without human interventions to the algorithms. As a testbed, we used a clone of the Travelling Salesman problem, the Travelling Snakesman game. We found some evidence that in this particular pathfinding problem human interventions result in superior results as the MAXMIN Ant System algorithm.

Keywords

Game AI Ant colony systems Human in the loop 

References

  1. 1.
    Silver, D., et al.: Mastering the game of Go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)CrossRefGoogle Scholar
  2. 2.
    Wouters, P.J.M., van Nimwegen, C., van Oostendorp, H., van der Spek, E.D.: A meta-analysis of the cognitive and motivational effects of serious games. J. Educ. Psychol. 105, 249–265 (2013)CrossRefGoogle Scholar
  3. 3.
    Clark, D., Tanner-Smith, E., Killingsworth, S., Bellamy, S.: Digital Games for Learning: A Systematic Review and Meta-Analysis (Executive Summary). SRI International, Menlo Park (2013)Google Scholar
  4. 4.
    Kickmeier-Rust, M.D.: Balancing on a high wire: adaptivity, a key feature of future learning games. In: Kickmeier-Rust, M.D., Albert, D. (eds.) An Alien’s Guide to Multi-adaptive Educational Games, pp. 43–88. Informing Science Press, Santa Rosa (2012)Google Scholar
  5. 5.
    Van der Kleij, F.M., Vermeulen, J.A., Schildkamp, K., Eggen, T.J.H.M.: Integrating data-based decision making, assessment for learning and diagnostic testing in formative assessment. Assess. Educ. Princ. Policy Pract. 22(3), 324–343 (2015)Google Scholar
  6. 6.
    Crisp, G.: Integrative assessment: reframing assessment practice for current and future learning. Assess. Eval. High. Educ. 37(1), 33–43 (2012)CrossRefGoogle Scholar
  7. 7.
    Kickmeier-Rust, M.D., Albert, D.: Educationally adaptive: balancing serious games. Int. J. Comput. Sci. Sport 11(1), 15–28 (2012)Google Scholar
  8. 8.
    Bellotti, F., Kapralos, B., Lee, L., Moreno-Ger, P., Berta, R.: Assessment in and of serious games: an overview. Adv. Hum. Comput. Interact. 2013, 11 (2013)Google Scholar
  9. 9.
    Shute, V., Ke, F., Wang, L.: Assessment and adaptation in games. In: Wouters, P., van Oostendorp, H. (eds.) Techniques to Improve the Effectiveness of Serious Games, Advances in Game-Based Learning, pp. 59–78. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39298-1_4CrossRefGoogle Scholar
  10. 10.
    D’Mello, S., Graesser, A.C.: Multimodal semi-automated affect detection from conversational cues, gross body language, and facial features. User Model. User-Adap. Inter. 20(2), 147–187 (2010)CrossRefGoogle Scholar
  11. 11.
    Si, M., Marsella, S.C., Pynadath, D.V.: Directorial control in a decision-theoretic framework for interactive narrative. In: International Conference on Interactive Digital Storytelling (ICIDS), pp. 221–233 (2009)CrossRefGoogle Scholar
  12. 12.
    Lester, J., Ha, E.Y., Lee, S.Y., Mott, B.W., Rowe, J.P., Sabourin, J.L.: Serious games get smart: intelligent game-based learning environments. AI Mag. 34(4), 31–45 (2013)CrossRefGoogle Scholar
  13. 13.
    Yannakakis, G.N.: Game AI revisited. In: Proceedings of the 9th Conference on Computing Frontiers, pp. 285–292. ACM, May 2012Google Scholar
  14. 14.
    Cui, X., Shi, H.: A*-based pathfinding in modern computer games. Int. J. Comput. Sci. Network Secur. 11(1), 125–130 (2011)Google Scholar
  15. 15.
    Silver, D., et al.: Mastering the game of go without human knowledge. Nature 550(7676), 354–359 (2017)CrossRefGoogle Scholar
  16. 16.
    Shute, V.J., Rieber, L., Van Eck, R.: Games . . . and . . . learning. In: Reiser, R., Dempsey, R. (eds.) Trends and Issues in Instructional Design and Technology, 3rd edn., pp. 321–332. Pearson Education Inc., Upper Saddle River (2011)Google Scholar
  17. 17.
    Frutos-Pascual, M., Zapirain, G.: Review of the use of AI techniques in serious games: decision making and machine learning. IEEE Trans. Comput. Intell. AI Games 9(2) (2015)CrossRefGoogle Scholar
  18. 18.
    Ciolacu, M., Tehrani, A.F., Beer, R.: Education 4.0 — Fostering student’s performance with machine learning methods. In: IEEE 23rd International Symposium for Design and Technology in Electronic Packaging (SIITME) (2017)Google Scholar
  19. 19.
    Conati, C., Porayska-Pomsta, K., Mavrikis, M.: AI in Education Needs Interpretable Machine Learning: Lessons from Open Learner Modelling. Cornell University Library (2018)Google Scholar
  20. 20.
    LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRefGoogle Scholar
  21. 21.
    Bologna, G., Hayashi, Y.: Characterization of symbolic rules embedded in deep dimlp networks: a challenge to transparency of deep learning. J. Artif. Intell. Soft Comput. Res. 7(4), 265–286 (2017)CrossRefGoogle Scholar
  22. 22.
    Amershi, S., Cakmak, M., Knox, W.B., Kulesza, T.: Power to the people: the role of humans in interactive machine learning. AI Mag. 35(4), 105–120 (2014)CrossRefGoogle Scholar
  23. 23.
    Laporte, G.: The traveling salesman problem: an overview of exact and approximate algorithms. Eur. J. Oper. Res. 59(2), 231–247 (1992)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Karp, R.M.: Mapping the genome: some combinatorial problems arising in molecular biology. In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing (STOC 1993), pp. 278–285 (1993)Google Scholar
  25. 25.
    Michael, R.G., David, S.J.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)zbMATHGoogle Scholar
  26. 26.
    Stützle, T., Hoos, H.H.: Max–min ant system. Future Gener. Comput. Syst. 16(8), 889–914 (2000)CrossRefGoogle Scholar
  27. 27.
    Wertheimer, M.: Productive Thinking, Enlarged edn. Harper & Row, New York (1959)Google Scholar
  28. 28.
    Holzinger, A.: Interactive Machine Learning for Health Informatics: When do we need the human-in-the-loop? Brain Inform. 3(2), 119–131 (2016)CrossRefGoogle Scholar
  29. 29.
    Holzinger, A.: Human-Computer Interaction and Knowledge Discovery (HCI-KDD): What is the benefit of bringing those two fields to work together? In: Cuzzocrea, A., Kittl, C., Simos, Dimitris E., Weippl, E., Xu, L. (eds.) CD-ARES 2013. LNCS, vol. 8127, pp. 319–328. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40511-2_22CrossRefGoogle Scholar
  30. 30.
    Holzinger, K., Mak, K., Kieseberg, P., Holzinger, A.: Can we trust Machine Learning Results? Artificial Intelligence in Safety-Critical decision Support. ERCIM News 112(1), 42–43 (2018)Google Scholar
  31. 31.
    Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for Educational AssessmentUniversity of Teacher EducationSt. GallenSwitzerland
  2. 2.Holzinger Group, HCI-KDD, Institute of Medical Informatics, Statistics and DocumentationMedical University GrazGrazAustria

Personalised recommendations