Multi-step Iterative Algorithm for Mathematical Modeling of Light Bullets in Anisotropic Media
Conference paper
First Online:
Abstract
To perform an analytical and numerical investigation of optical bullets in a focusing bulk waveguide with quadratic nonlinearity we use the well-known quasi-optical approach. We give an approximate soliton solution representing a two-component light bullet. To investigate numerically the regimes of the formation and propagation of two-component optical bullets we construct a conservative difference scheme. To realize the multi-dimensional nonlinear difference scheme we propose a multi-step effective iterative solver. This method allows us to carry out an accurate and efficient modeling of the considered processes.
Keywords
Multi-step algorithm Light bulletsReferences
- 1.Kivshar, Y.S., Agrawal, G.: Optical Solitons: From Fibers to Photonic Crystals. Academic press, Cambridge (2003)Google Scholar
- 2.Karamzin, Y.N., Sukhorukov, A.P.: Nonlinear interaction of diffracting light beams in a medium with quadratic nonlinearity; focusing of beams and limiting the efficiency of optical frequency converters. Eksp Zh. Teor. Fiz. 20, 734 (1974)Google Scholar
- 3.Kanashov, A.A., Rubenchik, A.M.: On diffraction and dispersion effect on three wave interaction. Phys. D 4, 122 (1981)CrossRefGoogle Scholar
- 4.Malomed, B.A., Drummond, P., He, H., et al.: Spatiotemporal solitons in multidimensional optical media with a quadratic nonlinearity. Phys. Rev. E 56, 4725 (1997)CrossRefGoogle Scholar
- 5.Skryabin, D.V., Firth, W.J.: Generation and stability of optical bullets in quadratic nonlinear media. Opt. Commun. 148, 79 (1998)CrossRefGoogle Scholar
- 6.McLeod, R., Wagner, K., Blair, S.: (3+1)-dimensional optical soliton dragging logic. Phys. Rev. A 52, 3254 (1995)CrossRefGoogle Scholar
- 7.McDonald, G.D., et al.: Bright solitonic matter-wave interferometer. Phys. Rev. Lett. 113, 013002 (2014)CrossRefGoogle Scholar
- 8.Sazonov, S.V., Mamaikin, M.S., Komissarova, M.V., Zakharova, I.G.: Planar light bullets under conditions of second-harmonic generation. Phys. Rev. E 96, 022208 (2017)CrossRefGoogle Scholar
- 9.Sazonov, S.V., Mamaikin, M.S., Zakharova, I.G., Komissarova, M.V.: Planar spatiotemporal solitons in a quadratic nonlinear medium. Phys. Wave Phenom. 25, 83 (2017)CrossRefGoogle Scholar
- 10.Samarskii, A.A.: The Theory of Difference Schemes Marcel. Dekker Inc., New York (2001)CrossRefGoogle Scholar
- 11.Karamzin, Y.N.: Difference schemes for calculating the three-frequency interactions of electromagnetic waves in a non-linear medium with quadratic polarization. USSR Comput. Math. Math. Phys. 14(4), 236–241 (1974)CrossRefGoogle Scholar
- 12.Ciegis, R., Mirinavicius, A., Radziunas, M.: Comparison of split step solvers for multidimensional Schrödinger problems. Comput. Methods Appl. Math. 13(1), 237–250 (2013)MathSciNetzbMATHGoogle Scholar
- 13.Gaspar, F.J., Rodrigo, C., Ciegis, R., Mirinavicius, A.: Comparison of solvers for 2D Schrodinger problems. Int. J. Numer. Anal. Model. 11(1), 131–147 (2014)MathSciNetzbMATHGoogle Scholar
- 14.Trofimov, V.A., Loginova, M.M.: Difference scheme for the problem of femtosecond pulse interaction with semiconductor in the case of nonlinear electron mobility. J. Comput. Math. Math. Phys. 45(12), 2185–2196 (2005)zbMATHGoogle Scholar
- 15.Shizgal, B.: Spectral Methods in Chemistry and Physics. SC. Springer, Dordrecht (2015). https://doi.org/10.1007/978-94-017-9454-1CrossRefzbMATHGoogle Scholar
- 16.Drummond, P.D.: Central partial difference propagation algorithms. Comput. Phys. Commun. 29, 211 (1983)MathSciNetCrossRefGoogle Scholar
- 17.Agrawal, G.: Nonlinear Fiber Optics, 5th edn. Academic press, Cambridge (2012)zbMATHGoogle Scholar
- 18.Trofimov, V.A., Loginova, M.M., Egorenkov, V.A.: Influence of external electric field on laser- induced wave process occurring in semiconductor under the femtosecond pulse acting. In: Proceedings of SPIE, vol. 9127, p. 912709 (2014)Google Scholar
- 19.Trofimov, V.A., Loginova, M.M., Egorenkov, V.A.: New two-step iteration process for solving the semiconductor plasma generation problem with arbitrary BC in 2D case. WIT Trans. Model. Simul. 59 (2015). https://doi.org/10.2495/CMEM150081
- 20.Antoine, X., Besse, C.: Unconditionally stable discretization schemes of non-reflecting boundary conditions for the one-dimensional Schrodinger equation. J. Comput. Phys. 188, 157–175 (2003)MathSciNetCrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019