Advertisement

Generalized Multiscale Discontinuous Galerkin Method for Helmholtz Problem in Fractured Media

  • U. GavrilevaEmail author
  • V. Alekseev
  • M. Vasilyeva
  • J. D. De Basabe
  • Y. Efendiev
  • R. L. Gibson Jr.
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11386)

Abstract

In this work, we consider wave propagation in fractured media. The mathematical model is described by Helmholtz problem related to wave propagation with specific interface conditions on the fracture in the frequency domain. We use a discontinuous Galerkin method for the approximation by space that help to weakly impose interface conditions on fractures. Such approximations lead to the large system of equations and computationally expensive. In this work, we construct a coarse grid approximation for effective solution using Generalized Multiscale Discontinuous Galerkin Method (GMsDGM). In this method, we construct a multiscale space using solution of the local spectral problems in each coarse elements. The results of the numerical solution for the two-dimensional problem are presented for model problems of the wave propagation in fractured media.

Keywords

Fractured media Wave propagation Helmholtz equation Discontinuous Galerkin method Multiscale method GMsFEM 

Notes

Acknowledgments

Work is supported by the mega-grant of the Russian Federation Government (N 14.Y26.31.0013).

References

  1. 1.
    De Basabe, J.D., Sen, M.K., Wheeler, M.F.: Seismic wave propagation in fractured media: a discontinuous Galerkin approach, SEG Expanded Abstr 30 (2011)Google Scholar
  2. 2.
    De Basabe, J.D., Sen, M.K., Wheeler, M.F.: Elastic wave propagation in fractured media using the discontinuous Galerkin method. Geophysics 81(4), T163–T174 (2016)CrossRefGoogle Scholar
  3. 3.
    Zhang, J.: Elastic wave modeling in fractured media with an explicit approach. Geophysics 70(5), T75–T85 (2005)CrossRefGoogle Scholar
  4. 4.
    Schoenberg, M.: Elastic wave behavior across linear slip interfaces. J. Acoust. Soc. Am. 68(5), 1516–1521 (1980)CrossRefGoogle Scholar
  5. 5.
    Engquist, B., Majda, A.: Absorbing boundary conditions for numerical simulation of waves. Proc. Nat. Acad. Sci. 74(5), 1765–1766 (1977)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Grote, M.J., Schneebeli, A., Schötzau, D.: Discontinuous Galerkin finite element method for the wave equation. SIAM J. Numer. Anal. 44(6), 2408–2430 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19(4), 742–760 (1982)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Lahivaara, T.: Discontinuous Galerkin Method for Time-Domain Wave Problems. University of Eastern Finland, Joensuu (2010)zbMATHGoogle Scholar
  9. 9.
    Efendiev, Y., Galvis, J., Hou, T.Y.: Generalized multiscale finite element methods (GMsFEM). J. Comput. Phys. 215, 116–135 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Chung, E.T., Efendiev, Y., Leung, W.T.: An online generalized multiscale discontinuous Galerkin method (GMsDGM) for flows in heterogeneous media. Commun. Comput. Phys. 21(2), 401–422 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Chung, E.T., Efendiev, Y., Leung, W.T.: Generalized multiscale finite element methods for wave propagation in heterogeneous media. Multiscale Model. Simul. 12(4), 1641–1721 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Gao, K., Fu, S., Gibson, R.L., Chung, E.T., Efendiev, Y.: Generalized multiscale finite-element method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media. J. Comput. Phys. 295, 161–188 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Chung, E.T., Efendiev, Y., Gibson, R.L., Vasilyeva, M.: A generalized multiscale finite element method for elastic wave propagation in fractured media. GEM-Int. J. Geomath. 7(2), 163–182 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Chung, E.T., Efendiev, Y., Fu, S.: Generalized multiscale finite element method for elasticity equations. GEM-Int. J. Geomath. 5(2), 225–251 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Multiscale Model Reduction LaboratoryNorth-Eastern Federal UniversityYakutskRussia
  2. 2.Institute for Scientific Computation, Texas A&M UniversityCollege StationUSA
  3. 3.Department of Seismology, Earth Sciences DivisionCICESEBaja CaliforniaMexico
  4. 4.Department of Mathematics and Institute for Scientific Computation (ISC)Texas A&M UniversityCollege StationUSA
  5. 5.Department of Geology and GeophysicsTexas A&M UniversityCollege StationUSA

Personalised recommendations