Numerical Modeling of the Charge Transfer Along 1D Molecular Chain “Donor-Bridge-Acceptor” at T = 300 K

  • Nadezhda FialkoEmail author
  • Victor D. Lakhno
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11386)


We consider charge transfer along homogeneous chain of sites (such as DNA fragment) with the ends which imitate a donor and an acceptor. We performed direct numerical experiments based on the semi-classical Holstein model. To take into account the temperature, Langevin thermostat is used. Recently it has been shown that in homogeneous chains the charge distribution in thermodynamic equilibrium state (TDE) depends on the thermal energy of the lattice subsystem. Here, we have calculated dynamics of the system from the initial state “the charge is localized at the donor” over time intervals to the attainment of the TDE. The time intervals dependence on the length of the chain at fixed temperature is estimated. Part of parameter values are chosen as for DNA fragments of the GA...AGGG type. The results of the calculations are compared with the data of biophysical experiments on the hole transfer in DNA sequences.


Holstein model Langevin equation Time to the attainment of the thermodynamic equilibrium state DNA fragment 



The work is partially supported by Russian Foundation for Basic Research, grants 16-07-00305 and 17-07-00801, and Russian Science Foundation, grant 16-11-10163.


  1. 1.
    Lakhno, V.: DNA nanobioelectronics. Int. J. Quantum Chem. 108(11), 1970–1981 (2008)CrossRefGoogle Scholar
  2. 2.
    Offenhousser, A., Rinaldi, R. (eds.): Nanobioelectronics - for Electronics, Biology, and Medicine. Springer, New York (2009). Scholar
  3. 3.
    Demple, B., Harrison, L.: Repair of oxidative damage to DNA: enzymology and biology. Annu. Rev. Biochem. 63, 915–948 (1994)CrossRefGoogle Scholar
  4. 4.
    Loft, S., Poulsen, H.: Cancer risk and oxidative DNA damage in man. J. Mol. Med. 74(6), 297–312 (1996)CrossRefGoogle Scholar
  5. 5.
    Meggers, E., Michel-Beyerle, M., Giese, B.: Sequence dependent long range hole transport in DNA. J. Am. Chem. Soc. 120(49), 12950–12955 (1998)CrossRefGoogle Scholar
  6. 6.
    Giese, B., Wessely, S., Spormann, M., Lindemann, U., Meggers, E., Michel-Beyerle, M.: On the mechanism of long-range electron transfer through DNA. Angew. Chem. Int. Ed. Engl. 38(7), 996–998 (1999)CrossRefGoogle Scholar
  7. 7.
    Giese, B., Amaudrut, J., Kohler, A.-K., Spormann, M., Wessely, S.: Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling. Nature 412, 318–320 (2001). Scholar
  8. 8.
    Grozema, F., Berlin, Y., Siebbeles, L.: Mechanism of charge migration through DNA: molecular wire behavior, single-step tunneling or hopping? J. Am. Chem. Soc. 122(44), 10903–10909 (2000)CrossRefGoogle Scholar
  9. 9.
    Henderson, P., Jones, D., Hampikian, G., Kan, Y., Schuster, G.: Long-distance charge transport in duplex DNA: the phonon-assisted polaron-like hopping mechanism. PNAS USA 96, 8353–8358 (1999)CrossRefGoogle Scholar
  10. 10.
    Lakhno, V., Fialko, N.: Hole mobility in a homogeneous nucleotide chain. JETP Lett. 78(5), 336–338 (2003)CrossRefGoogle Scholar
  11. 11.
    Fialko, N., Sobolev, E., Lakhno, V.: On the calculation of thermodynamic quantities in the Holstein model for homogeneous polynucleotides. JETP 124(4), 635–642 (2017)CrossRefGoogle Scholar
  12. 12.
    Fialko, N., Pyatkov, M., Lakhno, V.: On the thermodynamic equilibrium distribution of a charge in a homogeneous chain with a defect. In: Adam, G., Busa, J., Hnatic M., Podgainy D. (eds.) Mathematical Modeling and Computational Physics 2017 (MMCP 2017). EPJ Web of Conferences, vol. 173, p. 06004-4 (2018)CrossRefGoogle Scholar
  13. 13.
    Holstein, T.: Studies of polaron motion: Part I. The molecular-crystal model. Ann. Phys. 8(3), 325–342 (1959)CrossRefGoogle Scholar
  14. 14.
    Lomdahl, P., Kerr, W.: Do Davydov solitons exist at 300K? Phys. Rev. Lett. 55(11), 1235–1238 (1985)CrossRefGoogle Scholar
  15. 15.
    Helfand, E.: Brownian dynamics study of transitions in a polymer chain of bistable oscillators. J. Chem. Phys. 69(3), 1010–1018 (1978)CrossRefGoogle Scholar
  16. 16.
    Greenside, H., Helfand, E.: Numerical integration of stochastic differential equations - II. Bell System Tech. J. 60(8), 1927–1940 (1981)CrossRefGoogle Scholar
  17. 17.
    Seidel, C., Schulz, A., Sauer, M.: Nucleobase-specific quenching of fluorescent dyes. 1. Nucleobase one-electron redox potentials and their correlation with static and dynamic quenching efficiencies. J. Phys. Chem. 100(13), 5541–5553 (1996)CrossRefGoogle Scholar
  18. 18.
    Lewis, F., Wu, Y.: Dynamics of superexchange photoinduced electron transfer in duplex DNA. J. Photochem. Photobiol. C 2(1), 1–16 (2001)CrossRefGoogle Scholar
  19. 19.
    Voityuk, A., Rosch, N., Bixon, M., Jortner, J.: Electronic coupling for charge transfer and transport in DNA. J. Phys. Chem. B 104(41), 9740–9745 (2000)CrossRefGoogle Scholar
  20. 20.
    Jortner, J., Bixon, M., Voityuk, A., Roesh, N.: Superexchange mediated charge hopping in DNA. J. Phys. Chem. A 106(33), 7599–7606 (2002)CrossRefGoogle Scholar
  21. 21.
    Frenkel, D., Smit, B.: Understanding Molecular Simulation: From Algorithms to Applications. Academic Press, London (2001)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Mathematical Problems of Biology - The Branch of KIAM RASPushchinoRussia

Personalised recommendations