Bi-parametric Family of Methods with Memory Based of Ostrowski-Chun Method

  • Alicia Cordero
  • Javier G. Maimó
  • Juan R. Torregrosa
  • Maria P. VassilevaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11386)


In this work, we design a family of new iterative methods with memory, using some known schemes without memory keeping or increasing its order of convergence. As starting point we use the Ostrowski-Chum bi-parametric family of methods without memory, to design a new bi-parametric family of methods with memory, increasing the original order of convergence without adding new functional evaluations.


Nonlinear equation Multipoint iterative method Divided differences Method with memory Stability 



This research was partially supported by Ministerio de Economia y Competitividad under grants MTM2014-52016-C2-2-P, Generalitat Valenciana PROMETEO/2016/089 and FONDOCYT, Dominican Republic.


  1. 1.
    Steffensen, J.F.: Remarks on iteration. Skand. Aktuar Tidskr. 16, 64–72 (1933)zbMATHGoogle Scholar
  2. 2.
    Adomian, G.: Solving Frontier Problem of Physics: The Decomposition Method. Kluwer Academic Publishers, Dordrecht (1994)CrossRefGoogle Scholar
  3. 3.
    Babolian, E., Biazar, J., Vahidi, A.R.: Solution of a system of nonlinear equations by Adomian decomposition method. Appl. Math. Comput. 150, 847–854 (2004)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Abbasbandy, S.: Extended Newton’s method for a system of nonlinear equations by modified Adomian decomposition method. Appl. Math. Comput. 170, 648–656 (2005)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Cordero, A., Torregrosa, J.R.: Extended Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Artidiello, S., Cordero, A., Torregrosa, J.R., Vassileva, M.P.: Two weighted eight-order classes of iterative root-finding methods. Int. J. Comput. Math. 92(9), 1790–1805 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Petković, M.S., Neta, B., Petković, L.D., Džunić, J.: Multipoint Methods for Solving Nonlinear Equations. Academic Press, Cambridge (2013)CrossRefGoogle Scholar
  8. 8.
    Cordero, A., Maimó, J.G., Torregrosa, J.R., Vassileva, M.P.: Solving nonlinear problems by Ostrowski-Chun type parametric families. Math. Chem. 53, 430–449 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Blanchard, P.: The dynamics of Newton’s method. In: Proceedings of Symposia Applied Mathematics, vol. 49, pp. 139–152 (1994)Google Scholar
  10. 10.
    Chicharro, F., Cordero, A., Gutiérrez, J.M., Torregrosa, J.R.: Complex dynamics of derivative-free methods for nonlinear equations. Appl. Math. Comput. 219, 7023–7035 (2013)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Cordero, A., Gutiérrez, J.M., Magreñán, Á.A., Torregrosa, J.R.: Stability analysis of a parametric family of iterative methods for solving nonlinear models. Appl. Math. Comput. 285, 26–40 (2016)MathSciNetGoogle Scholar
  12. 12.
    Ostrowski, A.M.: Solution of Equations and System of Equations. Academic Press, Cambridge (1966)zbMATHGoogle Scholar
  13. 13.
    Chun, C.: Construction of Newton-like iterative methods for solving nonlinear equations. Numer. Math. 104, 297–315 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Soleymani, F., Khattri, S.K.: Finding simple roots by seventh- and eighth-order derivative-free methods. Int. J. Math. Models Appl. Sci. 1, 45–52 (2012)Google Scholar
  15. 15.
    Thukral, R.: Eighth-order iterative methods without derivatives for solving nonlinear equations. ISRN Appl. Math. 2011, 12 (2011). Article ID 693787MathSciNetCrossRefGoogle Scholar
  16. 16.
    Jay, I.O.: A note on Q-order of convergence. BIT Numer. Math. 41, 422–429 (2001)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Instituto Universitario de Matemática MultidisciplinarUniversitat Politècnica de ValènciaValènciaSpain
  2. 2.Instituto Tecnológico de Santo Domingo, (INTEC)Santo DomingoDominican Republic

Personalised recommendations