Advertisement

Problems of Quality of Public Transportation Systems in Smart Cities—Smoothness and Disruptions in Urban Traffic

  • Grzegorz KarońEmail author
  • Renata Żochowska
Chapter
Part of the Lecture Notes in Intelligent Transportation and Infrastructure book series (LNITI)

Abstract

Analysis of the smoothness flows of public transport vehicles on selected tram and bus lines has been presented. The need of priority services for public transport systems in agglomeration ITS system has been justified. The concept of the logical architecture of ITS for urban agglomeration area has been presented too.

Keywords

ITS services ITS conception Priority service for public transport Smoothness of public transport service In-vehicle time Waiting (wasted) time Delay of public transport vehicles Perceived travel time Utility function 

References

  1. 1.
    Bauer M (2013) Porównanie technik pomiaru czasu przejazdu pojazdów transportu zbiorowego. Transport Miejski i Regionalny. 7:4–10 [In Polish: Comparison of techniques for measuring the transit time of public transport vehicles]Google Scholar
  2. 2.
    Bertini R (2006) You are the traffic jam: an examination of congestion measures. In: Proceedings of the 85th annual meeting of the Transportation Research Board, WashingtonGoogle Scholar
  3. 3.
    Borkowski D (2014) Analiza punktualności I strat czasu w transporcie zbiorowym na przykłądzowych liniach tramwajowych. Silesian University of Technology, Faculty of Transport, Katowice [In Polish: Analysis of punctuality and loss of time in public transport on the example of the main tram lines]Google Scholar
  4. 4.
    Currie G, Sarvi M, Young B (2007) A new approach to evaluating on-road public transport priority projects: balancing the demand for limited road-space. Transportation 34(4):413–428CrossRefGoogle Scholar
  5. 5.
    Cats O, Gkioulou Z (2017) Modeling the impacts of public transport reliability and travel information on passengers’ waiting-time uncertainty. J Transp Logist 6(3):247–270CrossRefGoogle Scholar
  6. 6.
    Cronin J, Taylor S (1992) Measuring service quality: a reexamination and extension. J Mark 56:55–68CrossRefGoogle Scholar
  7. 7.
    Dargay JM, Goodwin PB (1999) Traffic congestion in Europe. Introductory report England, OECD reportGoogle Scholar
  8. 8.
    Diakaki C, Dinopoulou V, Aboudolas K, Papageorgiou M, Shabat E, Seider E, Leibov A (2003) Extensions and new applications of the traffic-responsive urban control strategy: coordinated signal control for urban networks. Transp Res Rec 1856:202–211CrossRefGoogle Scholar
  9. 9.
    Deakin M (ed) (2012) Smart Cities: governing, modelling and analysing the transition. Routledge, LondonGoogle Scholar
  10. 10.
    Dinopoulou C, Diakaki I, Papamichail M, Papageorgiou M (2013) Public transport priority strategies: progress and prospects. In: 2nd international symposium and 24th national conference on operational research, AthensGoogle Scholar
  11. 11.
    Eboli L, Mazzulla G (2007) Service quality attributes affecting customer satisfaction for bus transit. J Public Transp 10(3):21–34CrossRefGoogle Scholar
  12. 12.
    Freisler T, Karoń G (2013) The need for a systemic solution in the area of priority for tram transport in the Upper Silesian Agglomeration. Report of research work, KatowiceGoogle Scholar
  13. 13.
    Friedrich M, Noekel K (2017) Modeling intermodal networks with public transport and vehicle sharing systems. J Transp Logist 6(3):271–288CrossRefGoogle Scholar
  14. 14.
    Gilbert D, Wong RKC (2003) Passenger expectations and airline service: a Hong Kong based study. Tour Manag 24:519–532CrossRefGoogle Scholar
  15. 15.
    Grönroos C (1984) A service quality model and its marketing implications. Eur J Mark 18(4):36–44CrossRefGoogle Scholar
  16. 16.
    Grönroos C (1988) Service quality: the six criteria of good service quality, review of business. St. John’s University Press, New YorkGoogle Scholar
  17. 17.
    Gentile G, Cats O (2017) Introduction to the special issue on public transport modelling. J Transp Logist 6(3):219–220CrossRefGoogle Scholar
  18. 18.
    Hensher DA, Daniels R (1995) Productivity measurement in the urban bus sector. Transp Policy 2(3):179–194CrossRefGoogle Scholar
  19. 19.
    Hu K-C, Jen W (2006) Passengers’ perceived service quality of city buses in Taipei: scale development and measurement. Transp Rev 26(5):645–662CrossRefGoogle Scholar
  20. 20.
    Iqbal K, Khan MA, Abbas S, Hasan Z (2018) Intelligent transportation system (ITS) for smart-cities using Mamdani fuzzy inference system. Int J Adv Comput Sci Appl 9(2):94–105Google Scholar
  21. 21.
    Jacyna M (1999) Muliticriteria evaluation of traffic flow distribution in multimodal transport corridor, taking into account logistics base service. Arch Transp 11(3–4):43–66Google Scholar
  22. 22.
    Jacyna M, Wasiak M, Lewczuk K, Karoń G (2018) Noise and environmental pollution from transport: decisive problems in developing ecologically efficient transport systems. J VibroEng 20(2):954–962CrossRefGoogle Scholar
  23. 23.
    Janecki R, Karoń G (2014) Concept of smart cities and economic model of electric buses implementation. In: Mikulski J (ed) Telematics—support for transport. TST 2014. Communications in computer and information science. Springer, Berlin, Heidelberg, p 471Google Scholar
  24. 24.
    Jen W, Tu R, Lu T (2011) Managing passenger behavioral intention: an integrated framework for service quality, satisfaction, perceived value, and switching barriers. Transportation 38:321–342CrossRefGoogle Scholar
  25. 25.
    Karoń G (2013) Travel demand and transportation supply modeling for agglomeration without transportation model. In: Mikulski J (ed) Activities of transport telematics. CCIS, vol 395. Springer, Berlin, Heidelberg, pp 284–293Google Scholar
  26. 26.
    Karoń G, Freisler T (2013) Analysis of the possibilities of a system solution in the area of priority for tram communication in the Upper Silesian Agglomeration. Report of research work, Katowice, PolandGoogle Scholar
  27. 27.
    Karoń G, Mikulski J (2011) Transportation systems modelling as planning, organisation and management for solutions created with ITS. In: Mikulski J (ed) Modern transport telematics. CCIS, vol 239. Springer, Berlin, Heidelberg, pp 277–290Google Scholar
  28. 28.
    Karoń G, Mikulski J (2012) Problems of ITS architecture development and ITS architecture implementation in Upper-Silesian Conurbation in Poland. In: Mikulski J (ed) Telematics in the transport environment. CCIS, vol 329. Springer, Berlin, Heidelberg, pp 183–198Google Scholar
  29. 29.
    Karoń G, Mikulski J (2013) Forecasts for technical variants of ITS projects—example of Upper-Silesian conurbation. In: Mikulski J (ed) Activities of transport telematics. CCIS, vol 395. Springer, Berlin, Heidelberg, pp 67–74Google Scholar
  30. 30.
    Karoń G, Mikulski J (2014) Problems of systems engineering for ITS in large agglomeration—Upper-Silesian Agglomeration in Poland. In: Mikulski J (ed) Telematics—support for transport. CCIS, vol 471. Springer, Berlin, Heidelberg, pp 242–251Google Scholar
  31. 31.
    Kim S, Park M, Chon K (2005) A bus priority signal strategy for regulating headways of buses. J East Asia Soc Transp Stud 6:435–448Google Scholar
  32. 32.
    Komninos N (2002) Intelligent cities: innovation, knowledge systems and digital spaces. Spoon Press, London, pp 1–2Google Scholar
  33. 33.
    Kuang X, Xu L (2012) Real-time traffic signal intelligent control with transit-priority. J Softw 7(8):1738–1743CrossRefGoogle Scholar
  34. 34.
    Li M, Yin Y, Zhou K, Zhang W-B, Liu H, Tan C-W (2005) Adaptive transit signal priority on actuated signalized corridors. Preprint CD-ROM of the 84th annual meeting of the Transportation Research Board, WashingtonGoogle Scholar
  35. 35.
    Liao C-F, Davis GA (2011) Field testing and evaluation of a wireless-based transit signal priority system. Final report of CTS Project #2009029, Intelligent Transportation Systems Institute, Center for Transportation Studies, University of MinnesotaGoogle Scholar
  36. 36.
    Liao C-F, Davis GA, Iyer P (2008) A bus signal priority system using automatic vehicle location/global position systems and wireless communication systems. Final report of CTS Project # 2007089, Intelligent Transportation Systems Institute, Center for Transportation Studies, University of MinnesotaGoogle Scholar
  37. 37.
    Lin Y, Yang X, Chang G-L, Zou N (2013) Transit priority strategies for multiple routes under headway-based operations. Preprint CD-ROM of the 92nd annual meeting of the Transportation Research Board, WashingtonCrossRefGoogle Scholar
  38. 38.
    Malandraki G, Papamichail I, Papageorgiou M, Dinopoulou V (2015) Simulation and evaluation of a public transport priority methodology. Transp Res Procedia 6:402–410CrossRefGoogle Scholar
  39. 39.
    Mattsson J (1992) A service quality model based on ideal value standard. Int J Serv Ind Manag 3(3):18–33CrossRefGoogle Scholar
  40. 40.
    Murray SJ, Walton D, Thomas JA (2010) Attitudes towards public transport in New Zealand. Transportation 37(6):915–929CrossRefGoogle Scholar
  41. 41.
    Nathanail E (2008) Measuring the quality of service for passengers on the Hellenic railways. Transp Res Part A 42:48–66Google Scholar
  42. 42.
    Oña J, Oña R (2015) Quality of service in public transport based on customer satisfaction surveys: a review and assessment of methodological approaches. Transp Sci 49(3):605–622CrossRefGoogle Scholar
  43. 43.
    OECD (2007) Managing urban traffic congestion. European Conference of Ministers of Transport Report, OECD Publishing, ParisGoogle Scholar
  44. 44.
    Parasuraman A, Zeithaml VA, Berry LL (1985) A conceptual model of service quality and its implications for future research. J Mark 49:41–50CrossRefGoogle Scholar
  45. 45.
    Parasuraman A, Zeithaml VA, Berry LL (1988) SERVQUAL: a multiple-item scale for measuring consumer perceptions of service quality. J Retail 64(1):12–40Google Scholar
  46. 46.
    Parasuraman A, Zeithaml VA, Berry LL (1991) Understanding customer expectations of service. Sloan Manag Rev 32(3):39–48Google Scholar
  47. 47.
    Paulley N, Balcombe R, Mackett R, Titheridge H, Preston J, Wardm M, Shires J, Whitee P (2006) The demand for public transport: the effects of fares, quality of service, income and car ownership. Transp Policy 13(4):295–306CrossRefGoogle Scholar
  48. 48.
    Pullen WT (1993) Definition and measurement of quality of service for local public transport management. Transp Rev 13(3):247–264CrossRefGoogle Scholar
  49. 49.
    Rasouli S, Timmermans H (2014) Applications of theories and models of choice and decision-making under conditions of uncertainty in travel behavior research. Travel Behav Soc 1(3):79–90CrossRefGoogle Scholar
  50. 50.
    Redman L, Friman M, Gärlingb T, Hartig T (2013) Quality attributes of public transport that attract car users: a research review. Transp Policy 25:119–127CrossRefGoogle Scholar
  51. 51.
    Rudnicki A (1999) Jakość komunikacji miejskiej. Zeszyty Naukowo-Techniczne SITK w Krakowie. 71:384 [In Polish: Quality of public transport]Google Scholar
  52. 52.
    Starowicz W (2001) Kształtowanie jakości usług przewozowych w miejskim transporcie zbiorowym. Uniwersytet Szczeciński, Szczecin [In Polish: Shaping the quality of transport services in urban public transport]Google Scholar
  53. 53.
    Starowicz W (2004) Charakterystyka polskiej normy „Jakość usług w publicznym transporcie pasażerskim”. Technika Transportu Szynowego TTS 9:29–41 [In Polish: Characteristics of the Polish standard “Quality of services in public passenger transport”]Google Scholar
  54. 54.
    Sobota A, Karoń G (2009) Postrzeganie warunków ruchu miejskiego – płynność ruchu – wyniki badań. Zeszyty Naukowo – Techniczne SITK RP. Oddział w Krakowie, pp 215–234. [In Polish: Perception of urban traffic conditions—traffic smoothness—research results]Google Scholar
  55. 55.
    Transportation Research Board (2004) Transit capacity and quality of service. Manual, 2nd edGoogle Scholar
  56. 56.
    Vickrey WS (1969) Congestion theory and transport investment. Am Econ Rev 59(2). Papers and proceedings of the eighty-first annual meeting of the American Economic Association, pp 251–260Google Scholar
  57. 57.
    Vito A, Berardi U, Dangelico RM (2015) Smart cities: definitions, dimensions, performance, and initiatives. J Urban Technol 22:3–21Google Scholar
  58. 58.
    Zanella A, Bui N, Castellani A, Vangelista L, Zorzi M (2014) Internet of Things for smart cities. IEEE Internet Things J 1(1):22–32CrossRefGoogle Scholar
  59. 59.
    Żochowska R, Karoń G (2016) ITS services packages as a tool for managing traffic congestion in cities. In: Sładkowski A, Pamuła W (eds) Intelligent transportation systems—problems and perspectives. Springer, Cham, pp 81–103CrossRefGoogle Scholar
  60. 60.
    Żochowska R, Karoń G (2012) Przegląd literatury na temat zjawiska kongestii i zakłóceń ruchu w systemie transportowym miasta w aspekcie modelowania podróży. Zeszyty naukowo-techniczne SITK RP o/Kraków. Seria: Materiały Konferencyjne 2(98):251–276 [In Polish: Review of literature on the phenomenon of congestion and traffic disruptions in the city’s transport system in the aspect of travel modeling]Google Scholar
  61. 61.
    Żochowska R, Karoń G, Sobota A (2011) Modelowanie procesów decyzyjnych podróżnych w transporcie publicznym. In: Materiały konferencyjne VIII Konferencji Naukowo-Technicznej nt. Problemy komunikacyjne miast w warunkach zatłoczenia motoryzacyjnego. SITKRP 113–144. [In Polish: Modeling of traveler’s decision-making processes in public transport]Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of TransportSilesian University of TechnologyKatowicePoland

Personalised recommendations