Advertisement

Intermodal Terminals Network Modelling

  • Maria Cieśla
  • Jerzy Margielewicz
  • Damian GąskaEmail author
Chapter
Part of the Lecture Notes in Intelligent Transportation and Infrastructure book series (LNITI)

Abstract

The increasing traffic intensity and the emerging disproportions in the development of individual modes of transport cause that the European transport system becomes overloaded. Therefore, an important premise for the development of transport are the requirements of environmental protection, which affect the preference of environmentally friendly branches and transport technologies like multimodal or intermodal transport systems. The main objective of this chapter is to provide example of the terminals network modelling as well as the transport network using the graph method. A Polish logistic service provider PCC Intermodal was selected as an example of the logistic infrastructure network and its development. The article highlights influencing decisions regarding modelling of intermodal terminals network.

Keywords

Intermodal transport Inland terminal Transport network configuration Intermodal transport network design Graph method 

References

  1. 1.
    Abacoumkin C, Ballis A (2004) Development of an expert system for the evaluation of conventional and innovative technologies in the intermodal transport area. Eur J Oper Res 152(2):410–419zbMATHCrossRefGoogle Scholar
  2. 2.
    Alicke K (2005) Modeling and optimization of the intermodal terminal Mega Hub. Container terminals and automated transport systems. Springer, Berlin, Heidelberg, pp 307–323CrossRefGoogle Scholar
  3. 3.
    Arnold P, Peeters D, Thomas I (2004) Modelling a rail/road intermodal transportation system. Transp Res Part E Logist Transp Rev 40(3):255–270CrossRefGoogle Scholar
  4. 4.
    Balaban AT (1985) Applications of graph theory in chemistry. J Chem Inf Comput Sci 25(3):334–343CrossRefGoogle Scholar
  5. 5.
    Behrens C, Pels E (2012) Intermodal competition in the London-Paris passenger market: high-speed rail and air transport. J Urban Econ 71(3):278–288CrossRefGoogle Scholar
  6. 6.
    Bellert S, Woźniacki H (1968) Analiza i synteza układów elektrycznych metodą liczb strukturalnych. WNT, Warszawa [in Polish: Analysis and synthesis of electrical systems by the method of structural numbers]Google Scholar
  7. 7.
    Bhattacharya A, Kumar SA, Tiwari MK, Talluri S (2014) An intermodal freight transport system for optimal supply chain logistics. Transp Res Part C Emerg Technol 38:73–84CrossRefGoogle Scholar
  8. 8.
    Bławat D, Kalkowski K (2012) Transport intermodalny w Polsce-teraźniejszość i przyszłość. VIII Konferencja Logistyczna „Logistyka-współczesne trendy i wyzwania”, Łódź [In Polish: Intermodal transport in Poland—present and future. The 8th logistic conference “Logistics—contemporary trends and challenges”]Google Scholar
  9. 9.
    Bontekoning YM, Macharis C, Trip JJ (2004) Is a new applied transportation research field emerging?—a review of intermodal rail–truck freight transport literature. Transp Res Part A Policy Pract 38(1):1–34CrossRefGoogle Scholar
  10. 10.
    Bronsztejn IN, Siemiendiajew KA, Musiol G, Mühlig H (2007) Nowoczesne kompendium matematyki. PWN, Warszawa [In Polish: Modern compendium of mathematics]Google Scholar
  11. 11.
    Burgholzer W, Bauer G, Posset M, Jammernegg W (2013) Analysing the impact of disruptions in intermodal transport networks: a micro simulation-based model. Decis Support Syst 54(4):1580–1586CrossRefGoogle Scholar
  12. 12.
    Button K (2006) Transportation economics: some developments over the past 30 years. J Transp Res Forum 45:7–30Google Scholar
  13. 13.
    Cho JH, Kim HS, Choi HR (2012) An intermodal transport network planning algorithm using dynamic programming—a case study: from Busan to Rotterdam in intermodal freight routing. Appl Intell 36(3):529–541CrossRefGoogle Scholar
  14. 14.
    Choong ST, Cole MH, Kutanoglu E (2002) Empty container management for intermodal transportation networks. Transp Res Part E Logist Transp Rev 38(6):423–438CrossRefGoogle Scholar
  15. 15.
    Chu CY, Huang WC (2005) Determining container terminal capacity on the basis of an adopted yard handling system. Transp Rev 25(2):181–199CrossRefGoogle Scholar
  16. 16.
    Cieśla M, Mrówczyńska B, Opasiak T (2017) Multimodal transport risk assessment with risk mapping. Scientific Papers of Silesian University of Technology. Org Manag Ser 105:31–39Google Scholar
  17. 17.
    Crainic TG (2003) Long-haul freight transportation. Handbook of transportation science. Springer, Boston, pp 451–516CrossRefGoogle Scholar
  18. 18.
    Crainic TG, Kim KH (2007) Intermodal transportation. Handbooks Oper Res Manag Sci 14:467–537CrossRefGoogle Scholar
  19. 19.
    Czermański E (2012) Rozwój funkcji transportowo-logistycznych na Pomorzu. Logistyka 3:369–380 [In Polish: Development of transport and logistics functions in Pomerania]Google Scholar
  20. 20.
    Dekker R, van Asperen E, Ochtman G, Kusters W (2009) Floating stocks in FMCG supply chains: using intermodal transport to facilitate advance deployment. Int J Phys Distrib Logist Manag 39(8):632–648CrossRefGoogle Scholar
  21. 21.
    Dobruszkes F (2011) High-speed rail and air transport competition in Western Europe: a supply-oriented perspective. Transp Policy 18(6):870–879Google Scholar
  22. 22.
    Economic Commission for Europe (2001) Terminology on combined transport. United Nations Economic Commission for Europe, New York and GenevaGoogle Scholar
  23. 23.
    Euler L (1741) Solutio problematis ad geometriam situs. Commentarii Academiae Scientiarum Imperialis Pietropitanae 8:128–140Google Scholar
  24. 24.
    European Commission (2001) White paper European transport policy for 2010. Time to decide. Brief presentation. COM(2001)370Google Scholar
  25. 25.
    European Commission (2011) White paper. Roadmap to a single European transport area—towards a competitive and resource-efficient transport system. Publications Office of the European Union, LuxembourgGoogle Scholar
  26. 26.
    European Commission Communication (1997) Intermodal transport: intermodality of goods transport. COM(97)243Google Scholar
  27. 27.
    EUROSTAT (2017) EU transport in figures—statistical pocketbook 2017.  https://doi.org/10.2832/041248
  28. 28.
    Fechner I (2004) Centra logistyczne: cel, realizacja, przyszłość. Instytut Logistyki i Maazynowania [in Polish: Logistics centers: purpose, implementation, future]Google Scholar
  29. 29.
    Gąska D, Margielewicz J (2018) Development of the Silesian Logistic Centres in terms of handling improvement in intermodal transport on the east-west routes. Transport systems and delivery of cargo on east-west routes. Springer, Cham, pp 275–301CrossRefGoogle Scholar
  30. 30.
    Givoni M, Banister D (eds) (2010) Integrated transport: from policy to practice. RoutledgeGoogle Scholar
  31. 31.
    Grötschel M, Yuan Y (2012) Euler, Mei-Ko Kwan, Konigsberg, and a Chinese Postman. Documenta Mathematica, Extra Volume ISMP 43–50Google Scholar
  32. 32.
    Hämäläinen E, Inkinen T (2018) Intermodal transportation costs. In: ICTS 2018 conference Portorož, 14–15 June 2018Google Scholar
  33. 33.
    Hanssen TES, Mathisen TA, Jørgensen F (2012) Generalized transport costs in intermodal freight transport. Procedia Soc Behav Sci 54:189–200CrossRefGoogle Scholar
  34. 34.
    Heaver T, Meersman H, Van de Voorde E (2001) Co-operation and competition in international container transport: strategies for ports. Marit Policy Manag 28(3):293–305CrossRefGoogle Scholar
  35. 35.
    Herholzer C (1873) Uber die Möglichkeit einen ininzug ohne wiederholung und ohne unterbrechung zu umfahren. Math Ann 6(1):30–32MathSciNetCrossRefGoogle Scholar
  36. 36.
    Jacyna M, Pyza D, Jachimowski R (2018) Transport intermodalny. Projektowanie terminali przeładunkowych. Wydawnictwo Naukowe PWN, Warszawa [In Polish: Intermodal transport. Designing of transshipment terminals]Google Scholar
  37. 37.
    Janic M (2007) Modelling the full costs of an intermodal and road freight transport network. Transp Res Part D Transp Environ 12(1):33–44CrossRefGoogle Scholar
  38. 38.
    König D (1936) Theorie der endlichen und undendlichen graphen, LeipzigGoogle Scholar
  39. 39.
    Kostrzewski A, Nader M (2015) Analiza zagadnienia projektowania lądowych terminali przeładunkowych dla transportu intermodalnego. Logistyka 5:397–407 [In Polish: Analysis of the issue of intermodal terminals designing]Google Scholar
  40. 40.
    Krettek O, Grajnert J (2001) Logistyka w transporcie szynowym. Nawigator 13. Wrocław: Oficyna Wydawn. Politechn. [in Polish: Logistics in rail transport]Google Scholar
  41. 41.
    Kwaśniowski S, Zając M, Zając P (2010) Ruchoma droga w obliczu komodalności. Logitrans–VII Konferencja Naukowo–Techniczna, Szczecin, pp 227–239 [in Polish: Rolling highway in face of co-modality]Google Scholar
  42. 42.
    Leinbach TR (2007) Globalized freight transport: intermodality, e-commerce, logistics and sustainability. Edward Elgar PublishingGoogle Scholar
  43. 43.
    Limbourg S, Jourquin B (2009) Optimal rail-road container terminal locations on the European network. Transp Res Part E Logist Transp Rev 45(4):551–563CrossRefGoogle Scholar
  44. 44.
    Lin CC, Chiang YI, Lin SW (2014) Efficient model and heuristic for the intermodal terminal location problem. Comput Oper Res 51:41–51.  https://doi.org/10.1016/j.cor.2014.05.004MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Lowe D (2005) Intermodal freight transport. Butterworth-Heinemann, Oxford, UKCrossRefGoogle Scholar
  46. 46.
    Macharis C, Pekin E (2009) Assessing policy measures for the stimulation of intermodal transport: a GIS-based policy analysis. J Transp Geogr 17(6):500–508CrossRefGoogle Scholar
  47. 47.
    MacHaris C, Van Mierlo J, Van Den Bossche P (2007) Combining intermodal transport with electric vehicles: towards more sustainable solutions. Transp Plan Technol 30(2–3):311–323CrossRefGoogle Scholar
  48. 48.
    Macharis C, Caris A, Jourquin B, Pekin E (2011) A decision support framework for intermodal transport policy. Eur Transp Res Rev 3(4):167–178 CrossRefGoogle Scholar
  49. 49.
    Mathisen TA, Hanssen TES (2014) The academic literature on intermodal freight transport. Transp Res Procedia 3:611–620CrossRefGoogle Scholar
  50. 50.
    Meisel F, Kirschstein T, Bierwirth C (2013) Integrated production and intermodal transportation planning in large scale production–distribution-networks. Transp Res Part E Logist Transp Rev 60:62–78CrossRefGoogle Scholar
  51. 51.
    Miklińska J (2009) Współpraca usługodawców centrum logistycznego a realizacja koncepcji komodalności transportu. Logistyka 13:1–13 [in Polish: The cooperation among logistic operators and the realization of the concept of comodal transport]Google Scholar
  52. 52.
    Murawski J (2016) Optymalizacja sieci logistycznych transportu intermodalnego. Prace Naukowe Politechniki Warszawskiej. Transport 111:427–436 [in Polish: Optimization of logistic networks of intermodal transport]Google Scholar
  53. 53.
    Nemoto T, Browne M, Visser J, Castro J (2006) Intermodal transport and city logistics. In: Recent advances in city logistics, pp 15–30Google Scholar
  54. 54.
    Osowski S (2011) Wybrane zagadnienia teorii obwodów, Warszawa [In Polish: Selected problems of circuit theory]Google Scholar
  55. 55.
  56. 56.
    Pekin E, Macharis C, Meers D, Rietveld P (2013) Location analysis model for Belgian Intermodal Terminals: importance of the value of time in the intermodal transport chain. Comput Ind 64(2):113–120CrossRefGoogle Scholar
  57. 57.
    Petrella JR (2011) Use of graph theory to evaluate brain networks: a clinical tool for a small world? Radiology 259(2):317–320CrossRefGoogle Scholar
  58. 58.
    Rizzoli AE, Fornara N, Gambardella LM (2002) A simulation tool for combined rail/road transport in intermodal terminals. Math Comput Simul 59(1–3):57–71MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Robichaud L, Boisvert M, Robert J (1968) Grafy przepływu sygnałów, Warszawa [In Polish: Signal flow graphs]Google Scholar
  60. 60.
    Ronald N, Yang J, Thompson RG (2016) Exploring co-modality using on-demand transport systems. Transp Res Procedia 12:203–212.  https://doi.org/10.1016/j.trpro.2016.02.059CrossRefGoogle Scholar
  61. 61.
    Rosa G (2013) Uwarunkowania rozwoju transportu intermodalnego w Polsce. Zeszyty Naukowe Uniwersytetu Szczecińskiego. Problemy Transportu i Logistyki, (22 Transport intermodalny w Polsce. Uwarunkowania i perspektywy rozwoju), pp 281–294 [in Polish: Conditions for the development of intermodal transport in Poland]Google Scholar
  62. 62.
    Sonderegger M (2011) Applications of graph theory to an English rhyming corpus. J Comput Speech Lang 25(3):655–678CrossRefGoogle Scholar
  63. 63.
    Sommar R, Woxenius J (2007) Time perspectives on intermodal transport of consolidated cargo. Eur J Transp Infrastruct Res 7(2):163–182Google Scholar
  64. 64.
    SteadieSeifi M, Dellaert NP, Nuijten W, Van Woensel T, Raoufi R (2014) Multimodal freight transportation planning: a literature review. Eur J Oper Res 233(1):1–15zbMATHCrossRefGoogle Scholar
  65. 65.
    Świder J (1980) Grafy hybrydowe w modelowaniu drgających układów mechanicznych z liniowymi sprzężeniami, Rozprawa doktorska. Politechnika Śląska, Gliwice [In Polish: Hybrid graphs in the modeling of vibrating mechanical systems with linear couplings]Google Scholar
  66. 66.
    Tarapata Z (2012) Czy sieci rządzą światem? Od Eulera do Barabasiego, Biuletyn Instytutu Systemów Informatycznych 10:31–51 [In Polish: Do networks rule the world? From Euler to Barabasi]Google Scholar
  67. 67.
    Trip JJ, Bontekoning Y (2002) Integration of small freight flows in the intermodal transport system. J Transp Geogr 10(3):221–229CrossRefGoogle Scholar
  68. 68.
    Tsamboulas D, Vrenken H, Lekka AM (2007) Assessment of a transport policy potential for intermodal mode shift on a European scale. Transp Res Part A Policy Pract 41(8):715–733CrossRefGoogle Scholar
  69. 69.
    UNECE (2009) Illustrated glossary for transport statistics. ISBN: 978-92-79-17082-9Google Scholar
  70. 70.
    Winebrake JJ, Corbett JJ, Falzarano A, Hawker JS, Korfmacher K, Ketha S, Zilora S (2008) Assessing energy, environmental, and economic tradeoffs in intermodal freight transportation. J Air Waste Manag Assoc 58(8):1004–1013CrossRefGoogle Scholar
  71. 71.
    Wilson RJ (2000) Wprowadzenie do teorii grafów. Warszawa [In Polish: Introduction to graph theory]Google Scholar
  72. 72.
    Wojnarowki J (1981) Zastosowanie grafów w analizie drgań układów mechanicznych. Warszawa [In Polish: The use of graphs in the analysis of vibrations of mechanical systems]Google Scholar
  73. 73.
    Wolfram Mathematica (2018). http://www.wolfram.com/mathematica/
  74. 74.
    Woxenius J (2007) Generic framework for transport network designs: applications and treatment in intermodal freight transport literature. Transp Rev 27:733–749CrossRefGoogle Scholar
  75. 75.
    Wronka J, Mindur M (2010) Kolejowe przewozy intermodalne Zachód–Wschód–Zachód. Zeszyty Naukowe. Problemy Transportu i Logistyki/Uniwersytet Szczeciński (13):389–398 [in Polish: Intermodal railway transport West-East-West]Google Scholar
  76. 76.
    Żak J, Jacyna-Gołda I, Lewczuk K, Kłodawski M, Jachimowski R (2013) National logistics network design with regard to transport co-modality. Logist Transp 3(19):57–64Google Scholar
  77. 77.
    Zhang M, Wiegmans B, Tavasszy L (2013) Optimization of multimodal networks including environmental costs: a model and findings for transport policy. Comput Ind 64(2):136–145CrossRefGoogle Scholar
  78. 78.
    Zhang YH, Lin BL, Liang D, Gao HY (2006) Research on a generalized shortest path method of optimizing intermodal transportation problems. J China Railw Soc 4Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Maria Cieśla
    • 1
  • Jerzy Margielewicz
    • 1
  • Damian Gąska
    • 1
    Email author
  1. 1.Faculty of Transport, Department of Logistics and Transport TechnologiesSilesian University of TechnologyKatowicePoland

Personalised recommendations