Advertisement

Drawing Bipartite Graphs in Two Layers with Specified Crossings

  • Ajit A. DiwanEmail author
  • Bodhayan Roy
  • Subir Kumar Ghosh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11394)

Abstract

We give a polynomial-time algorithm to decide whether a bipartite graph admits a two-layer drawing in the plane such that a specified subset of pairs of edges cross. This is a generalization of the problem of recognizing permutation graphs, and we generalize the characterization of permutation graphs.

Keywords

Abstract topological graph Two-layer drawing Bipartite graph Permutation graph 

References

  1. 1.
    Diwan, A.A., Roy, B., Ghosh, S.K.: Two-layer drawings of bipartite graphs. Electron. Notes Discret. Math. 61, 351–357 (2017).  https://doi.org/10.1016/j.endm.2017.06.059CrossRefzbMATHGoogle Scholar
  2. 2.
    Eades, P., Whitesides, S.: Drawing graphs in two layers. Theor. Comput. Sci. 131(2), 361–374 (1994).  https://doi.org/10.1016/0304-3975(94)90179-1MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Finocchi, I.: Crossing-constrained hierarchical drawings. J. Discret. Algorithms 4, 299–312 (2006).  https://doi.org/10.1016/j.jda.2005.06.001MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of Discrete Mathematics, vol. 57, 2nd edn. Elsevier, New York (2004).  https://doi.org/10.1016/S0167-5060(04)80051-7CrossRefzbMATHGoogle Scholar
  5. 5.
    Gilmore, P.C., Hoffman, A.J.: A characterization of comparability graphs and of interval graphs. Can. J. Math. 16, 539–548 (1964)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Kratochvíl, J.: String graphs II. Recognizing string graphs is NP-Hard. J. Combin. Theory Ser. B 52, 67–78 (1991).  https://doi.org/10.1016/0095-8956(91)90091-WMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Kynčl, J.: Simple realizability of complete abstract topological graphs in P. Discret. Comput. Geom. 45, 383–399 (2011).  https://doi.org/10.1007/s00454-010-9320-xMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Pnueli, A., Lempel, A., Even, S.: Transitive orientation of graphs and identification of permutation graphs. Can. J. Math. 23, 160–175 (1971).  https://doi.org/10.4153/CJM-1971-016-5MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Spinrad, J.: On comparability and permutation graphs. SIAM J. Comput. 14(3), 658–670 (1985).  https://doi.org/10.1137/0214048MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ajit A. Diwan
    • 1
    Email author
  • Bodhayan Roy
    • 2
  • Subir Kumar Ghosh
    • 3
  1. 1.Department of Computer Science and EngineeringIndian Institute of Technology BombayMumbaiIndia
  2. 2.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic
  3. 3.Department of Computer ScienceRamakrishna Mission Vivekananda Educational and Research InstituteHowrahIndia

Personalised recommendations