Advertisement

New Directions in Approximate Nearest-Neighbor Searching

  • David M. MountEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11394)

Abstract

Approximate nearest-neighbor searching is an important retrieval problem with numerous applications in science and engineering. This problem has been the subject of many research papers spanning decades of work. Recently, a number of dramatic improvements and extensions have been discovered. In this paper, we will survey some of recent techniques that underlie these developments. In particular, we discuss local convexification, Macbeath regions, Delone sets, and how to apply these concepts to develop new data structures for approximate polytope membership queries and approximate vertical ray-shooting queries.

Keywords

Approximate nearest-neighbor searching Convexification Macbeath regions Geometric algorithms and data structures 

References

  1. 1.
    Abdelkader, A., Arya, S., da Fonseca, G.D., Mount, D.M.: Approximate nearest neighbor searching with non-Euclidean and weighted distances. In: Proceedings of 30th Annual ACM-SIAM Symposium on Discrete Algorithms (2019)CrossRefGoogle Scholar
  2. 2.
    Abdelkader, A., Mount, D.M.: Economical delone sets for approximating convex bodies. In: Proceedings of 16th Scandinavian Workshop Algorithm Theory, pp. 4:1–4:12 (2018)Google Scholar
  3. 3.
    Androulakis, I.P., Maranas, C.D., Floudas, C.A.: \(\alpha \)BB: a global optimization method for general constrained nonconvex problems. J. Glob. Optim. 7, 337–363 (1995)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Arya, S., da Fonseca, G.D., Mount, D.M.: Near-optimal \(\varepsilon \)-kernel construction and related problems. In: Proceedings of 33rd International Symposium on Computational Geometry, pp. 10:1–10:15 (2017). https://arxiv.org/abs/1604.01175
  5. 5.
    Arya, S., da Fonseca, G.D., Mount, D.M.: On the combinatorial complexity of approximating polytopes. Discrete Comput. Geom. 58, 849–870 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Arya, S., da Fonseca, G.D., Mount, D.M.: Optimal approximate polytope membership. In: Proceedings of 28th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 270–288 (2017)Google Scholar
  7. 7.
    Arya, S., da Fonseca, G.D., Mount, D.M.: Approximate polytope membership queries. SIAM J. Comput. 47, 1–51 (2018)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Arya, S., Malamatos, T.: Linear-size approximate Voronoi diagrams. In: Proceedings of 13th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 147–155 (2002)Google Scholar
  9. 9.
    Arya, S., Malamatos, T., Mount, D.M.: Space-efficient approximate Voronoi diagrams. In: Proceedings of the 34th Annual ACM Symposium on the Theory of Computing, pp. 721–730 (2002)Google Scholar
  10. 10.
    Arya, S., Malamatos, T., Mount, D.M.: Space-time tradeoffs for approximate nearest neighbor searching. J. Assoc. Comput. Mach. 57, 1–54 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Arya, S., Mount, D.M.: Approximate range searching. Comput. Geom. Theory Appl. 17, 135–163 (2000)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal algorithm for approximate nearest neighbor searching fixed dimensions. J. Assoc. Comput. Mach. 45(6), 891–923 (1998)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ball, K.: An elementary introduction to modern convex geometry. In: Levy, S. (ed.) Flavors of Geometry, pp. 1–58. Cambridge University Press, Cambridge (1997). (MSRI Publications, vol. 31)Google Scholar
  14. 14.
    Bárány, I.: The technique of M-regions and cap-coverings: a survey. Rend. Circ. Mat. Palermo 65, 21–38 (2000)MathSciNetzbMATHGoogle Scholar
  15. 15.
    de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-540-77974-2CrossRefzbMATHGoogle Scholar
  16. 16.
    Bertsekas, D.P.: Convexification procedures and decomposition methods for nonconvex optimization problems. J. Optim. Theor. Appl. 29, 169–197 (1979)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Bespamyatnikh, S.N.: Dynamic algorithms for approximate neighbor searching. In: Proceedings of Eighth Canadian Conference on Computational Geometry, pp. 252–257 (1996)Google Scholar
  18. 18.
    Beygelzimer, A., Kakade, S., Langford, J.: Cover trees for nearest neighbor. In: Proceedings of 23rd International Conference on Machine Learning, pp. 97–104 (2006)Google Scholar
  19. 19.
    Brönnimann, H., Chazelle, B., Pach, J.: How hard is halfspace range searching. Discrete Comput. Geom. 10, 143–155 (1993)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Chan, T.M.: Closest-point problems simplified on the RAM. In: Proceedings of 13th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 472–473 (2002)Google Scholar
  21. 21.
    Chazelle, B., Matoušek, J.: On linear-time deterministic algorithms for optimization problems in fixed dimension. J. Algorithms 21, 579–597 (1996)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Clarkson, K.L.: A randomized algorithm for closest-point queries. SIAM J. Comput. 17(4), 830–847 (1988)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Clarkson, K.L.: Building triangulations using \(\varepsilon \)-nets. In: Proceedings of 38th Annual ACM Symposium on Theory of Computing, pp. 326–335 (2006)Google Scholar
  24. 24.
    Duncan, C.A., Goodrich, M.T., Kobourov, S.: Balanced aspect ratio trees: combining the advantages of k-d trees and octrees. J. Algorithms 38, 303–333 (2001)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Ewald, G., Larman, D.G., Rogers, C.A.: The directions of the line segments and of the \(r\)-dimensional balls on the boundary of a convex body in Euclidean space. Mathematika 17, 1–20 (1970)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Har-Peled, S.: A replacement for Voronoi diagrams of near linear size. In: Proceedings of 42nd Annual IEEE Symposium on Foundations of Computer, pp. 94–103 (2001)Google Scholar
  27. 27.
    Har-Peled, S., Kumar, N.: Approximating minimization diagrams and generalized proximity search. SIAM J. Comput. 44, 944–974 (2015)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Har-Peled, S., Mendel, M.: Fast construction of nets in low dimensional metrics, and their applications. SIAM J. Comput. 35, 1148–1184 (2006)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Hilbert, D.: Über die gerade linie als kürzeste verbindung zweier punkte. Math. Ann. 46, 91–96 (1895)CrossRefGoogle Scholar
  30. 30.
    Krauthgamer, R., Lee, J.R.: Navigating nets: simple algorithms for proximity search. In: Proceedings of 15th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 798–807 (2004)Google Scholar
  31. 31.
    Vernicos, C., Walsh, C.: Flag-approximability of convex bodies and volume growth of Hilbert geometries (2016). https://hal.archives-ouvertes.fr/hal-01423693, hAL Archive (hal-01423693i)

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer Science and Institute for Advanced Computer StudiesUniversity of MarylandCollege ParkUSA

Personalised recommendations