Advertisement

Use of Geodesy and Geophysics Measurements to Probe the Gravitational Interaction

  • Aurélien HeesEmail author
  • Adrien Bourgoin
  • Pacome Delva
  • Christophe Le Poncin-Lafitte
  • Peter Wolf
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 196)

Abstract

Despite its extraordinary successes, the theory of General Relativity is likely not the ultimate theory of the gravitational interaction. Indeed, General Relativity as such is a classical theory and is therefore incomplete since it does not include any quantum effects. Moreover, most physicists agree that GR and the Standard Model are only effective field theories that are low-energy approximation of a more fundamental and more general theory that would provide a unified description of all the fundamental interactions. On the observational side, Dark Matter and Dark Energy are required to explain most of astrophysical and cosmological observations and very few is known and this two Dark components, which is sometimes interpreted as an hint that our theory of gravitation is incomplete. For these reasons, General Relativity is confronted to an increasing number of measurements, searching for deviations in more and more frameworks that extend General Relativity. Amongst all the measurements used to search for and to constrain deviations from General Relativity, a observations developed in the context of geodesy and geophysics are playing an important role like for example atomic clocks comparison, gravimetry measurements, satellite and lunar laser ranging, very long baseline interferometry, etc ...In this communication, we present briefly each of these geodesic/geophysics measurements and show how they have recently been used to constrain extensions of General Relativity, model of Dark Matter or of Dark Energy.

References

  1. 1.
    B. Famaey, S.S. McGaugh, Modified Newtonian dynamics (MOND): observational phenomenology and relativistic. Living Rev Relativ 15, 10 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    T. Clifton, P.G. Ferreira, A. Padilla, C. Skordis, Modified gravity and cosmology. Phys. Rep. 513, 1–189 (2012)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    C.M. Will, The confrontation between general relativity and experiment. Living Rev. Relativ. 17, 4 (2014)ADSzbMATHCrossRefGoogle Scholar
  4. 4.
    G. Lion, I. Panet, P. Wolf, C. Guerlin, S. Bize, P. Delva, Determination of a high spatial resolution geopotential model using atomic clock comparisons. J. Geodesy 91, 597–611 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    Microg Lacoste. FG5-X and FGL absolute gravity metersGoogle Scholar
  6. 6.
    \(\mu \) QUANS. Absolute quantum gravimeterGoogle Scholar
  7. 7.
    C.W. Chou, D.B. Hume, J.C.J. Koelemeij, D.J. Wineland, T. Rosenband, Frequency comparison of two high-accuracy Al\(^{+}\) optical clocks. Phys. Rev. Lett. 104(7), 070802 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    K. Beloy, N. Hinkley, N.B. Phillips, J.A. Sherman, M. Schioppo, J. Lehman, A. Feldman, L.M. Hanssen, C.W. Oates, A.D. Ludlow, Atomic clock with \(1 {\times }10^{-18}\) room-temperature blackbody stark uncertainty. Phys. Rev. Lett. 113(26), 260801 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    T.L. Nicholson, S.L. Campbell, R.B. Hutson, G.E. Marti, B.J. Bloom, R.L. McNally, W. Zhang, M.D. Barrett, M.S. Safronova, G.F. Strouse, W.L. Tew, J. Ye, Systematic evaluation of an atomic clock at \(2 {\times } 10^{-18}\) total uncertainty. Nat. Commun. 6, 6896 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, H. Katori, Cryogenic optical lattice clocks. Nat. Photon. 9, 185–189 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, E. Peik, Single-ion atomic clock with \(3 {\times }10^{-18}\) systematic uncertainty. Phys. Rev. Lett. 116(6), 063001 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    Peter Wolf. Viewpoint: Next generation clock networks. Physical Review: Viewpoint, Physics 9, 51, May 11, 2016 2016Google Scholar
  13. 13.
    H. Denker, L. Timmen, C. Voigt, S. Weyers, E. Peik, H.S. Margolis, P. Delva, P. Wolf, G. Petit, Geodetic methods to determine the relativistic redshift at the level of 10 (-18) - 18 in the context of international timescales: a review and practical results. J. Geodesy 92, 487–516 (2018)ADSCrossRefGoogle Scholar
  14. 14.
    T.E. Mehlstäubler, G. Grosche, C. Lisdat, P.O. Schmidt, H. Denker, Atomic clocks for geodesy. Rep. Prog. Phys. 81(6), 064401 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    I. Ciufolini, E. Pavlis, F. Chieppa, E. Fernandes-Vieira, J. Perez-Mercader, Test of general relativity and measurement of the lense-thirring effect with two earth satellites. Science 279, 2100 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    I. Ciufolini, E.C. Pavlis, A confirmation of the general relativistic prediction of the Lense-Thirring effect. Nature 431, 958–960 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    I. Ciufolini, A. Paolozzi, E.C. Pavlis, R. Koenig, J. Ries, V. Gurzadyan, R. Matzner, R. Penrose, G. Sindoni, C. Paris, H. Khachatryan, S. Mirzoyan, A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model. Measurement of Earth’s dragging of inertial frames. Eur. Phys. J. C 76, 120 (2016)Google Scholar
  18. 18.
    J.O. Dickey, P.L. Bender, J.E. Faller, X.X. Newhall, R.L. Ricklefs, J.G. Ries, P.J. Shelus, C. Veillet, A.L. Whipple, J.R. Wiant, J.G. Williams, C.F. Yoder, Lunar laser ranging: a continuing legacy of the apollo program. Science 265, 482–490 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    N.P. Pitjev, E.V. Pitjeva, Constraints on dark matter in the solar system. Astron. Lett. 39, 141–149 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    E.M. Standish, The JPL planetary ephemerides. Celest. Mech. 26, 181–186 (1982)ADSCrossRefGoogle Scholar
  21. 21.
    X.X. Newhall, E.M. Standish, J.G. Williams, DE 102 - A numerically integrated ephemeris of the moon and planets spanning forty-four centuries. A&A 125, 150–167 (1983)ADSzbMATHGoogle Scholar
  22. 22.
    E.M. Standish Jr., The observational basis for JPL’s DE 200, the planetary ephemerides of the Astronomical Almanac. A&A 233, 252–271 (1990)ADSGoogle Scholar
  23. 23.
    E.M. Standish, Testing alternate gravitational theories, in IAU Symposium, ed. by S.A. Klioner, P.K. Seidelmann, M.H. Soffel, vol. 261 (2010), pp. 179–182CrossRefGoogle Scholar
  24. 24.
    E.M. Standish, J.G. Williams, Orbital ephemerides of the Sun, Moon, and Planets, in Explanatory Supplement to the Astronomical Almanac, ed. by S.E. Urban, P.K. Seidelmann, 3rd edn. (Univeristy Science Books, 2012), pp. 305–346Google Scholar
  25. 25.
    W.M. Folkner, J.G. Williams, D.H. Boggs, R. Park, P. Kuchynka, The planetary and lunar ephemeris DE 430 and DE431. IPN Prog. Rep. 42(196) (2014)Google Scholar
  26. 26.
    A. Hees, W.M. Folkner, R.A. Jacobson, R.S. Park, Constraints on modified Newtonian dynamics theories from radio tracking data of the Cassini spacecraft. Phys. Rev. D 89(10), 102002 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    A. Fienga, H. Manche, J. Laskar, M. Gastineau, INPOP06: a new numerical planetary ephemeris. A&A 477, 315–327 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    A. Fienga, J. Laskar, T. Morley, H. Manche, P. Kuchynka, C. Le Poncin-Lafitte, F. Budnik, M. Gastineau, L. Somenzi, INPOP08, a 4-D planetary ephemeris: from asteroid and time-scale computations to ESA Mars Express and Venus Express contributions. A&A 507, 1675–1686 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    A. Fienga, J. Laskar, P. Kuchynka, C. Le Poncin-Lafitte, H. Manche, M. Gastineau, Gravity tests with INPOP planetary ephemerides, in IAU Symposium, ed. by S.A. Klioner, P.K. Seidelmann, M.H. Soffel, vol. 261 (2010), pp. 159–169CrossRefGoogle Scholar
  30. 30.
    A. Fienga, J. Laskar, P. Kuchynka, H. Manche, G. Desvignes, M. Gastineau, I. Cognard, G. Theureau, The INPOP10a planetary ephemeris and its applications in fundamental physics. Celest. Mech. Dyn. Astrono. 111(3), 363–385 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    A.K. Verma, A. Fienga, J. Laskar, H. Manche, M. Gastineau, Use of MESSENGER radioscience data to improve planetary ephemeris and to test general relativity. A&A 561, A115 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    A. Fienga, J. Laskar, P. Exertier, H. Manche, M. Gastineau, Numerical estimation of the sensitivity of INPOP planetary ephemerides to general relativity parameters. Celest. Mech. Dyn. Astron. 123, 325–349 (2015)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    E.V. Pitjeva, High-precision ephemerides of planets EPM and determination of some astronomical constants. Solar Syst. Res. 39, 176–186 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    E.V. Pitjeva, EPM ephemerides and relativity, in Proceedings of IAU Symposium 261, ed. by S.A. Klioner, P.K. Seidelmann, M.H. Soffel (2010), pp. 170–178CrossRefGoogle Scholar
  35. 35.
    E.V. Pitjeva, N.P. Pitjev, Relativistic effects and dark matter in the Solar system from observations of planets and spacecraft. MNRAS 432, 3431–3437 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    E.V. Pitjeva, Updated IAA RAS planetary ephemerides-EPM2011 and their use in scientific research. Solar Syst. Res. 47, 386–402 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    E.V. Pitjeva, N.P. Pitjev, Development of planetary ephemerides EPM and their applications. Celest. Mech. Dyn. Astron. 119, 237–256 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    A.L. Fey, D. Gordon, C.S. Jacobs, C. Ma, R.A. Gaume, E.F. Arias, G. Bianco, D.A. Boboltz, S. Böckmann, S. Bolotin, P. Charlot, A. Collioud, G. Engelhardt, J. Gipson, A.-M. Gontier, R. Heinkelmann, S. Kurdubov, S. Lambert, S. Lytvyn, D.S. MacMillan, Z. Malkin, A. Nothnagel, R. Ojha, E. Skurikhina, J. Sokolova, J. Souchay, O.J. Sovers, V. Tesmer, O. Titov, G. Wang, V. Zharov, The second realization of the international celestial reference frame by very long baseline interferometry. AJ 150, 58 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    M. Soffel, S.A. Klioner, G. Petit, P. Wolf, S.M. Kopeikin, P. Bretagnon, V.A. Brumberg, N. Capitaine, T. Damour, T. Fukushima, B. Guinot, T.-Y. Huang, L. Lindegren, C. Ma, K. Nordtvedt, J.C. Ries, P.K. Seidelmann, D. Vokrouhlický, C.M. Will, C. Xu, The IAU 2000 resolutions for astrometry, celestial mechanics, and metrology in the relativistic framework: explanatory supplement. Astron. J. 126, 2687–2706 (2003)ADSCrossRefGoogle Scholar
  40. 40.
    A. Einstein, Über den Einfluß der Schwerkraft auf die Ausbreitung des Lichtes. Annalen der Physik 340, 898–908 (1911). Traduction anglaise dans [256]ADSzbMATHCrossRefGoogle Scholar
  41. 41.
    K.S. Thorne, C.M. Will, Theoretical frameworks for testing relativistic gravity I. Foundations. ApJ 163, 595 (1971)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation. Physics Series (W. H. Freeman, 1973)Google Scholar
  43. 43.
    C.M. Will, Theory and Experiment in Gravitational Physics (1993)Google Scholar
  44. 44.
    A. Einstein, Die Grundlage der allgemeinen Relativitätstheorie. Annalen der Physik 354, 769–822 (1916). Traduction anglaise dans [256]ADSzbMATHCrossRefGoogle Scholar
  45. 45.
    D. Lovelock, The Einstein tensor and its generalizations. J. Math. Phys. 12, 498–501 (1971)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    D. Lovelock, The Four-Dimensionality of Space and the Einstein Tensor. J. Math. Phys. 13, 874–876 (1972)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    E. Fischbach, D. Sudarsky, A. Szafer, C. Talmadge, S.H. Aronson, Reanalysis of the Eotvos experiment. Phys. Rev. Lett. 56, 3–6 (1986)ADSCrossRefGoogle Scholar
  48. 48.
    C. Talmadge, J.-P. Berthias, R.W. Hellings, E.M. Standish, Model-independent constraints on possible modifications of Newtonian gravity. Phys. Rev. Lett. 61, 1159–1162 (1988)ADSCrossRefGoogle Scholar
  49. 49.
    E. Fischbach, C. Talmadge, Six years of the fifth force. Nature 356, 207–215 (1992)ADSCrossRefGoogle Scholar
  50. 50.
    E. Fischbach, C.L. Talmadge, The Search for Non-Newtonian Gravity, Aip-Press Series (Springer, Berlin, 1999)zbMATHCrossRefGoogle Scholar
  51. 51.
    E.G. Adelberger, J.H. Gundlach, B.R. Heckel, S. Hoedl, S. Schlamminger, Torsion balance experiments: a low-energy frontier of particle physics. Prog. Part. Nucl. Phys. 62, 102–134 (2009)ADSCrossRefGoogle Scholar
  52. 52.
    A. Hees, B. Lamine, S. Reynaud, M.-T. Jaekel, C. Le Poncin-Lafitte, V. Lainey, A. Füzfa, J.-M. Courty, V. Dehant, P. Wolf, Radioscience simulations in general relativity and in alternative theories of gravity. Class. Quantum Gravity 29(23), 235027 (2012)ADSzbMATHCrossRefGoogle Scholar
  53. 53.
    A. Hees, W. Folkner, R. Jacobson, R. Park, B. Lamine, C. Le Poncin-Lafitte, P. Wolf, Tests of gravitation at Solar System scales beyond the PPN formalism, in Journées 2013 Systèmes de référence spatio-temporels ed. by N. Capitaine (2014), pp. 241–244Google Scholar
  54. 54.
    Q.G. Bailey, V.A. Kostelecký, Signals for Lorentz violation in post-Newtonian gravity. Phys. Rev. D 74(4), 045001 (2006)ADSCrossRefGoogle Scholar
  55. 55.
    V.A. Kostelecký, J.D. Tasson, Matter-gravity couplings and Lorentz violation. Phys. Rev. D 83(1), 016013 (2011)ADSCrossRefGoogle Scholar
  56. 56.
    A. Hees, Q. Bailey, A. Bourgoin, H. Pihan-Le Bars, C. Guerlin, C. Le Poncin-Lafitte, Tests of Lorentz symmetry in the gravitational sector. Universe 2, 30 (2016)ADSCrossRefGoogle Scholar
  57. 57.
    J.D. Tasson, The standard-model extension and gravitational tests. Symmetry 8, 111 (2016)MathSciNetCrossRefGoogle Scholar
  58. 58.
    M. Milgrom, MOND effects in the inner Solar system. MNRAS 399, 474–486 (2009)ADSCrossRefGoogle Scholar
  59. 59.
    L. Blanchet, J. Novak, External field effect of modified Newtonian dynamics in the Solar system. MNRAS 412, 2530–2542 (2011)ADSCrossRefGoogle Scholar
  60. 60.
    M.-T. Jaekel, S. Reynaud, Post-Einsteinian tests of linearized gravitation. Class. Quantum Gravity 22, 2135–2157 (2005)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    M.-T. Jaekel, S. Reynaud, Post-Einsteinian tests of gravitation. Class. Quantum Gravity 23, 777–798 (2006)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    A. Avilez-Lopez, A. Padilla, P.M. Saffin, C. Skordis, The parametrized post-Newtonian-vainshteinian formalism. J. Cosmol. Astropart. Phys. 6, 044 (2015)ADSMathSciNetCrossRefGoogle Scholar
  63. 63.
    M. Hohmann, Parametrized post-Newtonian limit of Horndeski’s gravity theory. Phys. Rev. D 92(6), 064019 (2015)ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    G.L. Smith, C.D. Hoyle, J.H. Gundlach, E.G. Adelberger, B.R. Heckel, H.E. Swanson, Short-range tests of the equivalence principle. Phys. Rev. D 61(2), 022001 (1999)ADSCrossRefGoogle Scholar
  65. 65.
    S. Schlamminger, K.-Y. Choi, T.A. Wagner, J.H. Gundlach, E.G. Adelberger, Test of the equivalence principle using a rotating torsion balance. Phys. Rev. Lett. 100(4), 041101 (2008)ADSCrossRefGoogle Scholar
  66. 66.
    T.A. Wagner, S. Schlamminger, J.H. Gundlach, E.G. Adelberger, Torsion-balance tests of the weak equivalence principle. Class. Quantum Gravity 29(18), 184002 (2012)ADSCrossRefGoogle Scholar
  67. 67.
    V. Viswanathan, A. Fienga, O. Minazzoli, L. Bernus, J. Laskar, M. Gastineau, The new lunar ephemeris INPOP17a and its application to fundamental physics. MNRAS 476, 1877–1888 (2018)ADSCrossRefGoogle Scholar
  68. 68.
    K. Nordtvedt, Testing relativity with laser ranging to the Moon. Phys. Rev. 170, 1186–1187 (1968)ADSCrossRefGoogle Scholar
  69. 69.
    J.G. Williams, S.G. Turyshev, D.H. Boggs, Lunar laser ranging tests of the equivalence principle with the Earth and Moon. Inte. J. Mod. Phys. D 18, 1129–1175 (2009)ADSzbMATHCrossRefGoogle Scholar
  70. 70.
    J.G. Williams, S.G. Turyshev, D. Boggs, Lunar laser ranging tests of the equivalence principle. Class. Quantum Gravity 29(18), 184004 (2012)ADSCrossRefGoogle Scholar
  71. 71.
    C. Courde, J.M. Torre, E. Samain, G. Martinot-Lagarde, M. Aimar, D. Albanese, P. Exertier, A. Fienga, H. Mariey, G. Metris, H. Viot, V. Viswanathan, Lunar laser ranging in infrared at the Grasse laser station. A&A 602, A90 (2017)ADSCrossRefGoogle Scholar
  72. 72.
    P. Touboul, G. Métris, M. Rodrigues, Y. André, Q. Baghi, J. Bergé, D. Boulanger, S. Bremer, P. Carle, R. Chhun, B. Christophe, V. Cipolla, T. Damour, P. Danto, H. Dittus, P. Fayet, B. Foulon, C. Gageant, P.-Y. Guidotti, D. Hagedorn, E. Hardy, P.-A. Huynh, H. Inchauspe, P. Kayser, S. Lala, C. Lämmerzahl, V. Lebat, P. Leseur, F. Liorzou, M. List, F. Löffler, I. Panet, B. Pouilloux, P. Prieur, A. Rebray, S. Reynaud, B. Rievers, A. Robert, H. Selig, L. Serron, T. Sumner, N. Tanguy, P. Visser, MICROSCOPE mission: first results of a space test of the equivalence principle. Phys. Rev. Lett. 119(23), 231101 (2017)ADSCrossRefGoogle Scholar
  73. 73.
    J. Bergé, P. Brax, G. Métris, M. Pernot-Borràs, P. Touboul, J.-P. Uzan, MICROSCOPE mission: first constraints on the violation of the weak equivalence principle by a light scalar dilaton. Phys. Rev. Lett. 120(14), 141101 (2018)ADSCrossRefGoogle Scholar
  74. 74.
    P. Fayet. MICROSCOPE limits for new long-range forces and implications for unified theories. ArXiv e-prints (2017)Google Scholar
  75. 75.
    A. Peters, K.Y. Chung, S. Chu, Measurement of gravitational acceleration by dropping atoms. Nature 400, 849–852 (1999)ADSCrossRefGoogle Scholar
  76. 76.
    A. Peters, K.Y. Chung, S. Chu, High-precision gravity measurements using atom interferometry. Metrologia 38, 25–61 (2001)ADSCrossRefGoogle Scholar
  77. 77.
    S. Merlet, Q. Bodart, N. Malossi, A. Landragin, F. Pereira Dos Santos, O. Gitlein, L. Timmen, SHORT COMMUNICATION: comparison between two mobile absolute gravimeters: optical versus atomic interferometers. Metrologia 47, L9–L11 (2010)ADSCrossRefGoogle Scholar
  78. 78.
    L. Zhou, S. Long, B. Tang, X. Chen, F. Gao, W. Peng, W. Duan, J. Zhong, Z. Xiong, J. Wang, Y. Zhang, M. Zhan, Test of equivalence principle at 1 0\(^{-8}\) level by a dual-species double-diffraction Raman atom interferometer. Phys. Rev. Lett. 115(1), 013004 (2015)ADSCrossRefGoogle Scholar
  79. 79.
    F.W. Hehl, P. von der Heyde, G.D. Kerlick, J.M. Nester, General relativity with spin and torsion: foundations and prospects. Rev. Mod. Phys. 48, 393–416 (1976)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  80. 80.
    A. Peres, Test of equivalence principle for particles with spin. Phys. Rev. D 18, 2739–2740 (1978)ADSCrossRefGoogle Scholar
  81. 81.
    B. Mashhoon, Gravitational couplings of intrinsic spin. Class. Quantum Gravity 17, 2399–2409 (2000)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  82. 82.
    Y.N. Obukhov, Spin, gravity, and inertia. Phys. Rev. Lett. 86, 192–195 (2001)ADSMathSciNetCrossRefGoogle Scholar
  83. 83.
    W.-T. Ni, Searches for the role of spin and polarization in gravity. Rep. Prog. Phys. 73(5), 056901 (2010)ADSCrossRefGoogle Scholar
  84. 84.
    W.-T. Ni, Searches for the role of spin and polarization in gravity: a five-year update, in International Journal of Modern Physics Conference Series, vol. 40 (2016), pp. 1660010–146Google Scholar
  85. 85.
    M.G. Tarallo, T. Mazzoni, N. Poli, D.V. Sutyrin, X. Zhang, G.M. Tino, Test of einstein equivalence principle for 0-spin and half-integer-spin atoms: search for spin-gravity coupling effects. Phys. Rev. Lett. 113(2), 023005 (2014)ADSCrossRefGoogle Scholar
  86. 86.
    S. Aghion, O. Ahlén, C. Amsler, A. Ariga, T. Ariga, A. S. Belov, G. Bonomi, P. Bräunig, J. Bremer, R. S. Brusa, L. Cabaret, C. Canali, R. Caravita, F. Castelli, G. Cerchiari, S. Cialdi, D. Comparat, G. Consolati, J. H. Derking, S. Di Domizio, L. Di Noto, M. Doser, A. Dudarev, A. Ereditato, R. Ferragut, A. Fontana, P. Genova, M. Giammarchi, A. Gligorova, S. N. Gninenko, S. Haider, J. Harasimovicz, S. D. Hogan, T. Huse, E. Jordan, L. V. Jørgensen, T. Kaltenbacher, J. Kawada, A. Kellerbauer, M. Kimura, A. Knecht, D. Krasnický, V. Lagomarsino, A. Magnani, S. Mariazzi, V. A. Matveev, F. Moia, G. Nebbia, P. Nédélec, M. K. Oberthaler, N. Pacifico, V. Petráček, C. Pistillo, F. Prelz, M. Prevedelli, C. Regenfus, C. Riccardi, O. Røhne, A. Rotondi, H. Sandaker, P. Scampoli, A. Sosa, J. Storey, M. A. Subieta Vasquez, M. Špaček, G. Testera, D. Trezzi, R. Vaccarone, C. P. Welsch, and S. Zavatarelli. Prospects for measuring the gravitational free-fall of antihydrogen with emulsion detectors. J. Instrum. 8, 8013P (2013)Google Scholar
  87. 87.
    P. Perez, Y. Sacquin, The GBAR experiment: gravitational behaviour of antihydrogen at rest. Class. Quantum Gravity 29(18), 184008 (2012)ADSCrossRefGoogle Scholar
  88. 88.
    L. Hui, A. Nicolis, Proposal for an observational test of the vainshtein mechanism. Phys. Rev. Lett. 109(5), 051304 (2012)ADSCrossRefGoogle Scholar
  89. 89.
    J. Sakstein, B. Jain, J.S. Heyl, L. Hui, Tests of gravity theories using supermassive black holes. ApJl 844, L14 (2017)ADSCrossRefGoogle Scholar
  90. 90.
    J.A. Frieman, B.-A. Gradwohl, Dark matter and the equivalence principle. Phys. Rev. Lett. 67, 2926–2929 (1991)ADSCrossRefGoogle Scholar
  91. 91.
    B.-A. Gradwohl, J.A. Frieman, Dark matter, long-range forces, and large-scale structure. ApJ 398, 407–424 (1992)ADSCrossRefGoogle Scholar
  92. 92.
    S.M. Carroll, S. Mantry, M.J. Ramsey-Musolf, C.W. Stubbs, Dark-matter-induced violation of the weak equivalence principle. Phys. Rev. Lett. 103(1), 011301 (2009)ADSCrossRefGoogle Scholar
  93. 93.
    S.M. Carroll, S. Mantry, M.J. Ramsey-Musolf, Implications of a scalar dark force for terrestrial experiments. Phys. Rev. D 81(6), 063507 (2010)ADSCrossRefGoogle Scholar
  94. 94.
    M. Kesden, M. Kamionkowski, Tidal tails test the equivalence principle in the dark-matter sector. Phys. Rev. D 74(8), 083007 (2006)ADSCrossRefGoogle Scholar
  95. 95.
    M. Kesden, M. Kamionkowski, Galilean equivalence for galactic dark matter. Phys. Rev. Lett. 97(13), 131303 (2006)ADSCrossRefGoogle Scholar
  96. 96.
    C.W. Stubbs, Experimental limits on any long range nongravitational interaction between dark matter and ordinary matter. Phys. Rev. Lett. 70, 119–122 (1993)ADSCrossRefGoogle Scholar
  97. 97.
    Y. Bai, J. Salvado, B.A. Stefanek, Cosmological constraints on the gravitational interactions of matter and dark matter. J. Cosmol. Astropart. Phys. 10, 029 (2015)ADSMathSciNetCrossRefGoogle Scholar
  98. 98.
    A. Hees, T. Do, A.M. Ghez, G.D. Martinez, S. Naoz, E.E. Becklin, A. Boehle, S. Chappell, D. Chu, A. Dehghanfar, K. Kosmo, J.R. Lu, K. Matthews, M.R. Morris, S. Sakai, R. Schödel, G. Witzel, Testing general relativity with stellar orbits around the supermassive black hole in our galactic center. Phys. Rev. Lett. 118(21), 211101 (2017)ADSCrossRefGoogle Scholar
  99. 99.
    T. Damour, G.W. Gibbons, C. Gundlach, Dark matter, time-varying G, and a dilaton field. Phys. Rev. Lett. 64, 123–126 (1990)ADSCrossRefGoogle Scholar
  100. 100.
    J.-M. Alimi, A. Füzfa, Is dark energy abnormally weighting? Int. J. Mod. Phys. D 16, 2587–2592 (2007)ADSCrossRefGoogle Scholar
  101. 101.
    J.-M. Alimi, A. Füzfa, The abnormally weighting energy hypothesis: the missing link between dark matter and dark energy. J. Cosmology Astropart. Phys. 9, 14 (2008)ADSCrossRefGoogle Scholar
  102. 102.
    A. Füzfa, J.-M. Alimi, Toward a unified description of dark energy and dark matter from the abnormally weighting energy hypothesis. Phys. Rev. D 75(12), 123007 (2007)ADSCrossRefGoogle Scholar
  103. 103.
    N. Mohapi, A. Hees, J. Larena, Test of the equivalence principle in the dark sector on galactic scales. J. Cosmol. Astropart. Phys. 3, 032 (2016)ADSMathSciNetCrossRefGoogle Scholar
  104. 104.
    D. Mattingly, Modern tests of lorentz invariance. Living Rev. Relativ. 8, 5 (2005)Google Scholar
  105. 105.
    V.W. Hughes, H.G. Robinson, V. Beltran-Lopez, Upper limit for the anisotropy of inertial mass from nuclear resonance experiments. Phys. Rev. Lett. 4, 342–344 (1960)ADSCrossRefGoogle Scholar
  106. 106.
    R.W.P. Drever, A search for anisotropy of inertial mass using a free precession technique. Philos. Mag. 6, 683–687 (1961)ADSCrossRefGoogle Scholar
  107. 107.
    T.E. Chupp, R.J. Hoare, R.A. Loveman, E.R. Oteiza, J.M. Richardson, M.E. Wagshul, A.K. Thompson, Results of a new test of local Lorentz invariance: a search for mass anisotropy in \(^{21}\)Ne. Phys. Rev. Lett. 63, 1541–1545 (1989)ADSCrossRefGoogle Scholar
  108. 108.
    S.K. Lamoreaux, J.P. Jacobs, B.R. Heckel, F.J. Raab, E.N. Fortson, New limits on spatial anisotropy from optically-pumped sup201Hg and \(^{199}\)Hg. Phys. Rev. Lett. 57, 3125–3128 (1986)ADSCrossRefGoogle Scholar
  109. 109.
    J.D. Prestage, J.J. Bollinger, W.M. Itano, D.J. Wineland, Limits for spatial anisotropy by use of nuclear-spin-polarized Be-9(+) ions. Phys. Rev. Lett. 54, 2387–2390 (1985)ADSCrossRefGoogle Scholar
  110. 110.
    M.P. Haugan, C.M. Will, Modern tests of special relativity. Phys. Today 40, 69–86 (1987)ADSCrossRefGoogle Scholar
  111. 111.
    A. Brillet, J.L. Hall, Improved laser test of the isotropy of space. Phys. Rev. Lett. 42, 549–552 (1979)ADSCrossRefGoogle Scholar
  112. 112.
    P.L. Stanwix, M.E. Tobar, P. Wolf, C.R. Locke, E.N. Ivanov, Improved test of Lorentz invariance in electrodynamics using rotating cryogenic sapphire oscillators. Phys. Rev. D 74(8), 081101 (2006)ADSCrossRefGoogle Scholar
  113. 113.
    P. Wolf, S. Bize, A. Clairon, A.N. Luiten, G. Santarelli, M.E. Tobar, Tests of Lorentz invariance using a microwave resonator. Phys. Rev. Lett. 90(6), 060402 (2003)ADSzbMATHCrossRefGoogle Scholar
  114. 114.
    H.P. Robertson, Postulate versus observation in the special theory of relativity. Rev. Mod. Phys. 21, 378–382 (1949)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  115. 115.
    R. Mansouri, R.U. Sexl, A test theory of special relativity. I - simultaneity and clock synchronization. II - first order tests. Gen. Relativ. Gravitat. 8, 497–513 (1977)Google Scholar
  116. 116.
    R. Mansouri, R.U. Sexl. A test theory of special relativity: II. first order tests. Gen. Relativ. Gravit. 8, 515–524 (1977)ADSCrossRefGoogle Scholar
  117. 117.
    R. Mansouri, R.U. Sexl, A test theory of special relativity: III Second-order tests. Gen. Relativ. Gravit. 8, 809–814 (1977)ADSCrossRefGoogle Scholar
  118. 118.
    S. Reinhardt, G. Saathoff, H. Buhr, L.A. Carlson, A. Wolf, D. Schwalm, S. Karpuk, C. Novotny, G. Huber, M. Zimmermann, R. Holzwarth, T. Udem, T.W. Hänsch, G. Gwinner, Test of relativistic time dilation with fast optical atomic clocks at different velocities. Nat. Phys. 3, 861–864 (2007)CrossRefGoogle Scholar
  119. 119.
    B. Botermann, D. Bing, C. Geppert, G. Gwinner, T.W. Hänsch, G. Huber, S. Karpuk, A. Krieger, T. Kühl, W. Nörtershäuser, C. Novotny, S. Reinhardt, R. Sánchez, D. Schwalm, T. Stöhlker, A. Wolf, G. Saathoff, Test of time dilation using stored Li\(^{+}\) ions as clocks at relativistic speed. Phys. Rev. Lett. 113(12), 120405 (2014)ADSCrossRefGoogle Scholar
  120. 120.
    C.M. Will, Clock synchronization and isotropy of the one-way speed of light. Phys. Rev. D 45, 403–411 (1992)ADSCrossRefGoogle Scholar
  121. 121.
    P. Wolf, G. Petit, Satellite test of special relativity using the global positioning system. Phys. Rev. A 56, 4405–4409 (1997)ADSCrossRefGoogle Scholar
  122. 122.
    J. Lodewyck, S. Bilicki, E. Bookjans, J.-L. Robyr, C. Shi, G. Vallet, R. Le Targat, D. Nicolodi, Y. Le Coq, J. Guéna, M. Abgrall, P. Rosenbusch, S. Bize, Optical to microwave clock frequency ratios with a nearly continuous strontium optical lattice clock. Metrologia 53, 1123 (2016)ADSCrossRefGoogle Scholar
  123. 123.
    R. Le Targat, L. Lorini, Y. Le Coq, M. Zawada, J. Guéna, M. Abgrall, M. Gurov, P. Rosenbusch, D.G. Rovera, B. Nagórny, R. Gartman, P.G. Westergaard, M.E. Tobar, M. Lours, G. Santarelli, A. Clairon, S. Bize, P. Laurent, P. Lemonde, J. Lodewyck, Experimental realization of an optical second with strontium lattice clocks. Nat. Commun. 4, 2109 (2013)CrossRefGoogle Scholar
  124. 124.
    S. Falke, N. Lemke, C. Grebing, B. Lipphardt, S. Weyers, V. Gerginov, N. Huntemann, C. Hagemann, A. Al-Masoudi, S. Häfner, S. Vogt, U. Sterr, C. Lisdat, A strontium lattice clock with \(3 {\times } 10^{-17}\) inaccuracy and its frequency. New J. Phys. 16(7), 073023 (2014)ADSCrossRefGoogle Scholar
  125. 125.
    C. Grebing, A. Al-Masoudi, D. Sören, H. Sebastian, G. Vladislav, W. Stefan, L. Burghard, R. Fritz, S. Uwe, L. Christian, Realization of a timescale with an accurate optical lattice clock. Optica 3(6), 563–569 (2016)CrossRefGoogle Scholar
  126. 126.
    I.R. Hill, R. Hobson, W. Bowden, E.M. Bridge, S. Donnellan, E.A. Curtis, P. Gill, A low maintenance Sr optical lattice clock. In Journal of Physics Conference Series, volume 723 of Journal of Physics Conference Series, page 012019, June 2016Google Scholar
  127. 127.
    C. Lisdat, G. Grosche, N. Quintin, C. Shi, S.M.F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, P.-E. Pottie, A clock network for geodesy and fundamental science. Nat. Commun. 7, 12443 (2016)ADSCrossRefGoogle Scholar
  128. 128.
    P.A. Williams, W.C. Swann, N.R. Newbury, High-stability transfer of an optical frequency over long fiber-optic links. J. Opt. Soc. Am. B Opt. Phys. 25, 1284 (2008)ADSCrossRefGoogle Scholar
  129. 129.
    G. Grosche, O. Terra, K. Predehl, R. Holzwarth, B. Lipphardt, F. Vogt, U. Sterr, H. Schnatz, Optical frequency transfer via 146 km fiber link with \(10\hat{}\)-19 relative accuracy. Opt. Lett. 34, 2270 (2009)ADSCrossRefGoogle Scholar
  130. 130.
    G. Grosche, Eavesdropping time and frequency: phase noise cancellation along a time-varying path, such as an optical fiber. Opt. Lett. 39, 2545 (2014)ADSCrossRefGoogle Scholar
  131. 131.
    F. Stefani, O. Lopez, A. Bercy, W.-K. Lee, C. Chardonnet, G. Santarelli, P.-E. Pottie, A. Amy-Klein, Tackling the limits of optical fiber links. J. Opt. Soc. Am. B Opt. Phys. 32, 787 (2015)ADSCrossRefGoogle Scholar
  132. 132.
    J. Geršl, P. Delva, P. Wolf, Relativistic corrections for time and frequency transfer in optical fibres. Metrologia 52, 552 (2015)ADSCrossRefGoogle Scholar
  133. 133.
    P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I.R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F.N. Baynes, H.S. Margolis, P. Gill, Test of special relativity using a fiber network of optical clocks. Phys. Rev. Lett. 118(22), 221102 (2017)ADSCrossRefGoogle Scholar
  134. 134.
    D. Colladay, V.A. Kostelecký, CPT violation and the standard model. Phys. Rev. D 55, 6760–6774 (1997)ADSCrossRefGoogle Scholar
  135. 135.
    D. Colladay, V.A. Kostelecký, Lorentz-violating extension of the standard model. Phys. Rev. D 58(11), 116002 (1998)ADSCrossRefGoogle Scholar
  136. 136.
    V.A. Kostelecký, M. Mewes, Signals for Lorentz violation in electrodynamics. Phys. Rev. D 66(5), 056005 (2002)ADSCrossRefGoogle Scholar
  137. 137.
    J.D. Tasson, What do we know about Lorentz invariance? Rep. Prog. Phys. 77(6), 062901 (2014)ADSMathSciNetCrossRefGoogle Scholar
  138. 138.
    V.A. Kostelecký, N. Russell, Data tables for Lorentz and CPT violation. Rev. Mod. Phys. 83, 11–32 (2011)ADSCrossRefGoogle Scholar
  139. 139.
    H. Pihan-Le Bars, C. Guerlin, R.-D. Lasseri, J.-P. Ebran, Q.G. Bailey, S. Bize, E. Khan, P. Wolf, Lorentz-symmetry test at Planck-scale suppression with nucleons in a spin-polarized \(^{133}\)Cs cold atom clock. Phys. Rev. D 95(7), 075026 (2017)Google Scholar
  140. 140.
    P. Wolf, F. Chapelet, S. Bize, A. Clairon, Cold atom clock test of Lorentz invariance in the matter sector. Phys. Rev. Lett. 96(6), 060801 (2006)ADSCrossRefGoogle Scholar
  141. 141.
    M.A. Hohensee, S. Chu, A. Peters, H. Müller, Equivalence principle and gravitational redshift. Phys. Rev. Lett. 106(15), 151102 (2011)ADSCrossRefGoogle Scholar
  142. 142.
    M.A. Hohensee, N. Leefer, D. Budker, C. Harabati, V.A. Dzuba, V.V. Flambaum, Limits on violations of Lorentz symmetry and the Einstein equivalence principle using radio-frequency spectroscopy of atomic dysprosium. Phys. Rev. Lett. 111(5), 050401 (2013)ADSCrossRefGoogle Scholar
  143. 143.
    T. Damour, Theoretical aspects of the equivalence principle. Class. Quantum Gravity 29(18), 184001 (2012)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  144. 144.
    J.-P. Uzan, Varying constants, gravitation and cosmology. Living Rev. Relativ. 14, 2 (2011)ADSzbMATHCrossRefGoogle Scholar
  145. 145.
    J. Guéna, M. Abgrall, D. Rovera, P. Rosenbusch, M.E. Tobar, P. Laurent, A. Clairon, S. Bize, Improved tests of local position invariance using Rb87 and Cs133 fountains. Phys. Rev. Lett. 109(8), 080801 (2012)ADSCrossRefGoogle Scholar
  146. 146.
    T. Rosenband, D.B. Hume, P.O. Schmidt, C.W. Chou, A. Brusch, L. Lorini, W.H. Oskay, R.E. Drullinger, T.M. Fortier, J.E. Stalnaker, S.A. Diddams, W.C. Swann, N.R. Newbury, W.M. Itano, D.J. Wineland, J.C. Bergquist, Frequency ratio of Al\(^{+}\) and Hg\(^{+}\) single-ion optical clocks; metrology at the 17th decimal place. Science 319, 1808– (2008)ADSCrossRefGoogle Scholar
  147. 147.
    N. Leefer, C.T.M. Weber, A. Cingöz, J.R. Torgerson, D. Budker, New limits on variation of the fine-structure constant using atomic dysprosium. Phys. Rev. Lett. 111(6), 060801 (2013)ADSCrossRefGoogle Scholar
  148. 148.
    R.M. Godun, P.B.R. Nisbet-Jones, J.M. Jones, S.A. King, L.A.M. Johnson, H.S. Margolis, K. Szymaniec, S.N. Lea, K. Bongs, P. Gill, Frequency ratio of two optical clock transitions in \(^{171}{\rm Yb}^{+}\) and constraints on the time variation of fundamental constants. Phys. Rev. Lett. 113(21), 210801 (2014)ADSCrossRefGoogle Scholar
  149. 149.
    N. Huntemann, B. Lipphardt, C. Tamm, V. Gerginov, S. Weyers, E. Peik, Improved limit on a temporal variation of m\(_{p}\)/m\(_{e}\) from comparisons of Yb\(^{+}\) and Cs atomic clocks. Phys. Rev. Lett. 113(21), 210802 (2014)ADSCrossRefGoogle Scholar
  150. 150.
    P. Brax, C. Burrage, A.-C. Davis, G. Gubitosi, Cosmological tests of the disformal coupling to radiation. J. Cosmol. Astropart. Phys. 11, 1 (2013)ADSCrossRefGoogle Scholar
  151. 151.
    A. Hees, O. Minazzoli, J. Larena, Breaking of the equivalence principle in the electromagnetic sector and its cosmological signatures. Phys. Rev. D 90(12), 124064 (2014)ADSCrossRefGoogle Scholar
  152. 152.
    R.F.L. Holanda, K.N.N.O. Barros, Searching for cosmological signatures of the Einstein equivalence principle breaking. Phys. Rev. D 94(2), 023524 (2016)ADSMathSciNetCrossRefGoogle Scholar
  153. 153.
    S. Peil, S. Crane, J.L. Hanssen, T.B. Swanson, C.R. Ekstrom, Tests of local position invariance using continuously running atomic clocks. Phys. Rev. A 87(1), 010102 (2013)ADSCrossRefGoogle Scholar
  154. 154.
    N. Ashby, T.P. Heavner, S.R. Jefferts, T.E. Parker, A.G. Radnaev, Y.O. Dudin, Testing local position invariance with four cesium-fountain primary frequency standards and four NIST hydrogen masers. Phys. Rev. Lett. 98(7), 070802 (2007)ADSCrossRefGoogle Scholar
  155. 155.
    R.V. Pound, G.A. Rebka, Gravitational red-shift in nuclear resonance. Phys. Rev. Lett. 3, 439–441 (1959)ADSCrossRefGoogle Scholar
  156. 156.
    R.F.C. Vessot, M.W. Levine, E.M. Mattison, E.L. Blomberg, T.E. Hoffman, G.U. Nystrom, B.F. Farrel, R. Decher, P.B. Eby, C.R. Baugher, Test of relativistic gravitation with a space-borne hydrogen maser. Phys. Rev. Lett. 45, 2081–2084 (1980)ADSCrossRefGoogle Scholar
  157. 157.
    P. Delva, A. Hees, S. Bertone, E. Richard, P. Wolf, Test of the gravitational redshift with stable clocks in eccentric orbits: application to Galileo satellites 5 and 6. Class. Quantum Gravity 32(23), 232003 (2015)ADSCrossRefGoogle Scholar
  158. 158.
    L. Cacciapuoti, C. Salomon, Atomic clock ensemble in space. J. Phys. Conf. Ser. 327(1), 012049 (2011)CrossRefGoogle Scholar
  159. 159.
    M. Soffel, H. Herold, H. Ruder, M. Schneider, Relativistic theory of gravimetric measurements and definition of thegeoid. Manuscr. Geod. 13, 143–146 (1988)ADSGoogle Scholar
  160. 160.
    S.M. Kopejkin, Relativistic Manifestations of gravitational fields in gravimetry and geodesy. Manuscripta Geodaetica 16 (1991)Google Scholar
  161. 161.
    J. Müller, M. Soffel, S.A. Klioner, Geodesy and relativity. J. Geodesy 82, 133–145 (2008)ADSzbMATHCrossRefGoogle Scholar
  162. 162.
    P. Delva, J. Lodewyck, Atomic clocks: new prospects in metrology and geodesy. Acta Futura, (7), 67–78, 7:67–78, November 2013Google Scholar
  163. 163.
    B. Altschul, Q.G. Bailey, L. Blanchet, K. Bongs, P. Bouyer, L. Cacciapuoti, S. Capozziello, N. Gaaloul, D. Giulini, J. Hartwig, L. Iess, P. Jetzer, A. Landragin, E. Rasel, S. Reynaud, S. Schiller, C. Schubert, F. Sorrentino, U. Sterr, J.D. Tasson, G.M. Tino, P. Tuckey, P. Wolf, Quantum tests of the Einstein equivalence principle with the STE-QUEST space mission. Adv. Space Res. 55, 501–524 (2015)ADSCrossRefGoogle Scholar
  164. 164.
    S. Zucker, T. Alexander, S. Gillessen, F. Eisenhauer, R. Genzel, Probing post-Newtonian physics near the galactic black hole with stellar redshift measurements. ApJl 639, L21–L24 (2006)ADSCrossRefGoogle Scholar
  165. 165.
    M. Grould, F.H. Vincent, T. Paumard, G. Perrin, General relativistic effects on the orbit of the S2 star with GRAVITY. ArXiv e-prints (2017)Google Scholar
  166. 166.
    Gravity Collaboration, R. Abuter, A. Amorim, N. Anugu, M. Bauböck, M. Benisty, J. P. Berger, N. Blind, H. Bonnet, W. Brandner, A. Buron, C. Collin, F. Chapron, Y. Clénet, V. Coudé Du Foresto, P. T. de Zeeuw, C. Deen, F. Delplancke-Ströbele, R. Dembet, J. Dexter, G. Duvert, A. Eckart, F. Eisenhauer, G. Finger, N. M. Förster Schreiber, P. Fédou, P. Garcia, R. Garcia Lopez, F. Gao, E. Gendron, R. Genzel, S. Gillessen, P. Gordo, M. Habibi, X. Haubois, M. Haug, F. Haußmann, T. Henning, S. Hippler, M. Horrobin, Z. Hubert, N. Hubin, A. Jimenez Rosales, L. Jochum, K. Jocou, A. Kaufer, S. Kellner, S. Kendrew, P. Kervella, Y. Kok, M. Kulas, S. Lacour, V. Lapeyrère, B. Lazareff, J.-B. Le Bouquin, P. Léna, M. Lippa, R. Lenzen, A. Mérand, E. Müler, U. Neumann, T. Ott, L. Palanca, T. Paumard, L. Pasquini, K. Perraut, G. Perrin, O. Pfuhl, P. M. Plewa, S. Rabien, A. Ramírez, J. Ramos, C. Rau, G. Rodríguez-Coira, R.-R. Rohloff, G. Rousset, J. Sanchez-Bermudez, S. Scheithauer, M. Schöller, N. Schuler, J. Spyromilio, O. Straub, C. Straubmeier, E. Sturm, L. J. Tacconi, K. R. W. Tristram, F. Vincent, S. von Fellenberg, I. Wank, I. Waisberg, F. Widmann, E. Wieprecht, M. Wiest, E. Wiezorrek, J. Woillez, S. Yazici, D. Ziegler, and G. Zins. Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole. A&A 615, L15 (2018)Google Scholar
  167. 167.
    S. Weinberg, A new light boson? Phys. Rev. Lett. 40, 223–226 (1978)ADSCrossRefGoogle Scholar
  168. 168.
    J. Preskill, M.B. Wise, F. Wilczek, Cosmology of the invisible axion. Phys. Lett. B 120, 127–132 (1983)ADSCrossRefGoogle Scholar
  169. 169.
    W. Hu, R. Barkana, A. Gruzinov, Fuzzy cold dark matter: the wave properties of ultralight particles. Phys. Rev. Lett. 85, 1158–1161 (2000)ADSCrossRefGoogle Scholar
  170. 170.
    F. Piazza, M. Pospelov, Sub-eV scalar dark matter through the super-renormalizable Higgs portal. Phys. Rev. D 82(4), 043533 (2010)ADSCrossRefGoogle Scholar
  171. 171.
    A. Khmelnitsky, V. Rubakov, Pulsar timing signal from ultralight scalar dark matter. J. Cosmol. Astropart. Phys. 2, 019 (2014)ADSMathSciNetCrossRefGoogle Scholar
  172. 172.
    N.K. Porayko, K.A. Postnov, Constraints on ultralight scalar dark matter from pulsar timing. Phys. Rev. D 90(6), 062008 (2014)ADSCrossRefGoogle Scholar
  173. 173.
    H.-Y. Schive, T. Chiueh, T. Broadhurst, Cosmic structure as the quantum interference of a coherent dark wave. Nat. Phys. 10, 496–499 (2014)CrossRefGoogle Scholar
  174. 174.
    J. Beyer, C. Wetterich, Small scale structures in coupled scalar field dark matter. Phys. Lett. B 738, 418–423 (2014)ADSCrossRefGoogle Scholar
  175. 175.
    A. Arvanitaki, J. Huang, K. Van Tilburg, Searching for dilaton dark matter with atomic clocks. Phys. Rev. D 91(1), 015015 (2015)ADSCrossRefGoogle Scholar
  176. 176.
    Y.V. Stadnik, V.V. Flambaum, Searching for dark matter and variation of fundamental constants with laser and maser interferometry. Phys. Rev. Lett. 114(16), 161301 (2015)ADSCrossRefGoogle Scholar
  177. 177.
    Y.V. Stadnik, V.V. Flambaum, Can dark matter induce cosmological evolution of the fundamental constants of nature? Phys. Rev. Lett. 115(20), 201301 (2015)ADSCrossRefGoogle Scholar
  178. 178.
    P.W. Graham, D.E. Kaplan, J. Mardon, S. Rajendran, W.A. Terrano, Dark matter direct detection with accelerometers. Phys. Rev. D 93(7), 075029 (2016)ADSCrossRefGoogle Scholar
  179. 179.
    A. Arvanitaki, S. Dimopoulos, K. Van Tilburg, Sound of dark matter: searching for light scalars with resonant-mass detectors. Phys. Rev. Lett. 116(3), 031102 (2016)ADSCrossRefGoogle Scholar
  180. 180.
    Y.V. Stadnik, V.V. Flambaum, Enhanced effects of variation of the fundamental constants in laser interferometers and application to dark-matter detection. Phys. Rev. A 93(6), 063630 (2016)ADSCrossRefGoogle Scholar
  181. 181.
    Y.V. Stadnik, V.V. Flambaum, Improved limits on interactions of low-mass spin-0 dark matter from atomic clock spectroscopy. Phys. Rev. A 94(2), 022111 (2016)ADSCrossRefGoogle Scholar
  182. 182.
    D.J.E. Marsh, Axion cosmology. Phys. Rep. 643, 1–79 (2016)ADSMathSciNetCrossRefGoogle Scholar
  183. 183.
    L.A. Ureña-López, A.X. Gonzalez-Morales, Towards accurate cosmological predictions for rapidly oscillating scalar fields as dark matter. J. Cosmol. Astropart. Phys. 7, 048 (2016)ADSMathSciNetCrossRefGoogle Scholar
  184. 184.
    E. Calabrese, D.N. Spergel, Ultra-light dark matter in ultra-faint dwarf galaxies. MNRAS 460, 4397–4402 (2016)ADSCrossRefGoogle Scholar
  185. 185.
    D. Blas, D.L. Nacir, S. Sibiryakov, Ultralight dark matter resonates with binary pulsars. Phys. Rev. Lett. 118(26), 261102 (2017)ADSCrossRefGoogle Scholar
  186. 186.
    T. Bernal, V.H. Robles, T. Matos, Scalar field dark matter in clusters of galaxies. MNRAS 468, 3135–3149 (2017)ADSCrossRefGoogle Scholar
  187. 187.
    L. Hui, J.P. Ostriker, S. Tremaine, E. Witten, Ultralight scalars as cosmological dark matter. Phys. Rev. D 95(4), 043541 (2017)ADSCrossRefGoogle Scholar
  188. 188.
    C. Abel, N.J. Ayres, G. Ban, G. Bison, K. Bodek, V. Bondar, M. Daum, M. Fairbairn, V.V. Flambaum, P. Geltenbort, K. Green, W.C. Griffith, M. van der Grinten, Z.D. Grujić, P.G. Harris, N. Hild, P. Iaydjiev, S.N. Ivanov, M. Kasprzak, Y. Kermaidic, K. Kirch, H.-C. Koch, S. Komposch, P.A. Koss, A. Kozela, J. Krempel, B. Lauss, T. Lefort, Y. Lemière, D.J.E. Marsh, P. Mohanmurthy, A. Mtchedlishvili, M. Musgrave, F.M. Piegsa, G. Pignol, M. Rawlik, D. Rebreyend, D. Ries, S. Roccia, D. Rozpȩdzik, P. Schmidt-Wellenburg, N. Severijns, D. Shiers, Y.V. Stadnik, A. Weis, E. Wursten, J. Zejma, G. Zsigmond, Search for axion-like dark matter through nuclear spin precession in electric and magnetic fields. Phys. Rev. X 7(4), 041034 (2017)Google Scholar
  189. 189.
    T. Bernal, L.M. Fernández-Hernández, T. Matos, M.A. Rodríguez-Meza, Rotation curves of high-resolution LSB and SPARC galaxies with fuzzy and multistate (ultralight boson) scalar field dark matter. MNRAS 475, 1447–1468 (2018)ADSCrossRefGoogle Scholar
  190. 190.
    M.B. Green, J.H. Schwarz, E. Witten, Superstring Theory (1988)Google Scholar
  191. 191.
    T. Damour, A.M. Polyakov, The string dilation and a least coupling principle. Nucl. Phys. B 423, 532–558 (1994)ADSzbMATHCrossRefGoogle Scholar
  192. 192.
    T. Damour, A.M. Polyakov, String theory and gravity. Gen. Relativ. Gravit. 26, 1171–1176 (1994)ADSMathSciNetCrossRefGoogle Scholar
  193. 193.
    M. Gasperini, F. Piazza, G. Veneziano, Quintessence as a runaway dilaton. Phys. Rev. D 65(2), 023508 (2001)ADSCrossRefGoogle Scholar
  194. 194.
    T. Damour, F. Piazza, G. Veneziano, Runaway dilaton and equivalence principle violations. Phys. Rev. Lett. 89(8), 081601 (2002)ADSCrossRefGoogle Scholar
  195. 195.
    T. Damour, J.F. Donoghue, Equivalence principle violations and couplings of a light dilaton. Phys. Rev. D 82(8), 084033 (2010)ADSCrossRefGoogle Scholar
  196. 196.
    A. Hees, O. Minazzoli, E. Savalle, Y.V. Stadnik, P. Wolf, Violation of the equivalence principle from light scalar dark matter. Phys. Rev. D 98(6), 064051 (2018)ADSCrossRefGoogle Scholar
  197. 197.
    A. Hees, J. Guéna, M. Abgrall, S. Bize, P. Wolf, Searching for an oscillating massive scalar field as a dark matter candidate using atomic hyperfine frequency comparisons. Phys. Rev. Lett. 117(6), 061301 (2016)ADSCrossRefGoogle Scholar
  198. 198.
    K. Van Tilburg, N. Leefer, L. Bougas, D. Budker, Search for ultralight scalar dark matter with atomic spectroscopy. Phys. Rev. Lett. 115(1), 011802 (2015)ADSCrossRefGoogle Scholar
  199. 199.
    T.A. de Pirey Saint Alby, N. Yunes, Cosmological evolution and Solar System consistency of massive scalar-tensor gravity. Phys. Rev. D 96(6), 064040 (2017)Google Scholar
  200. 200.
    T. Damour, G. Esposito-Farese, Nonperturbative strong-field effects in tensor-scalar theories of gravitation. Phys. Rev. Lett. 70, 2220–2223 (1993)ADSCrossRefGoogle Scholar
  201. 201.
    T. Damour, G. Esposito-Farèse, Tensor-scalar gravity and binary-pulsar experiments. Phys. Rev. D 54, 1474–1491 (1996)ADSCrossRefGoogle Scholar
  202. 202.
    O. Minazzoli, A. Hees, Late-time cosmology of a scalar-tensor theory with a universal multiplicative coupling between the scalar field and the matter Lagrangian. Phys. Rev. D 90(2), 023017 (2014)ADSCrossRefGoogle Scholar
  203. 203.
    S.M. Carroll, Quintessence and the rest of the world: suppressing long-range interactions. Phys. Rev. Lett. 81, 3067–3070 (1998)ADSCrossRefGoogle Scholar
  204. 204.
    N.J. Nunes, J.E. Lidsey, Reconstructing the dark energy equation of state with varying alpha. Phys. Rev. D 69(12), 123511 (2004)ADSCrossRefGoogle Scholar
  205. 205.
    C.J.A.P. Martins, A.M.M. Pinho, Fine-structure constant constraints on dark energy. Phys. Rev. D 91(10), 103501 (2015)ADSCrossRefGoogle Scholar
  206. 206.
    M.A. Hohensee, H. Müller, R.B. Wiringa, Equivalence principle and bound kinetic energy. Phys. Rev. Lett. 111(15), 151102 (2013)ADSCrossRefGoogle Scholar
  207. 207.
    H. Müller, S. Herrmann, A. Saenz, A. Peters, C. Lämmerzahl, Optical cavity tests of Lorentz invariance for the electron. Phys. Rev. D 68(11), 116006 (2003)ADSCrossRefGoogle Scholar
  208. 208.
    H. Müller, Testing Lorentz invariance by the use of vacuum and matter filled cavity resonators. Phys. Rev. D 71(4), 045004 (2005)ADSCrossRefGoogle Scholar
  209. 209.
    N.A. Flowers, C. Goodge, J.D. Tasson, Superconducting-gravimeter tests of local lorentz invariance. Phys. Rev. Lett. 119(20), 201101 (2017)ADSCrossRefGoogle Scholar
  210. 210.
    A. Bourgoin, C. Le Poncin-Lafitte, A. Hees, S. Bouquillon, G. Francou, M.-C. Angonin, Lorentz symmetry violations from matter-gravity couplings with lunar laser ranging. Phys. Rev. Lett. 119(20), 201102 (2017)ADSCrossRefGoogle Scholar
  211. 211.
    H. Pihan-Le Bars, C. Guerlin, P. Wolf, Progress on testing Lorentz symmetry with MICROSCOPE. ArXiv e-prints (2017)Google Scholar
  212. 212.
    B. Bertotti, L. Iess, P. Tortora, A test of general relativity using radio links with the Cassini spacecraft. Nature 425, 374–376 (2003)ADSCrossRefGoogle Scholar
  213. 213.
    S.B. Lambert, C. Le Poncin-Lafitte, Determining the relativistic parameter \(\gamma \) using very long baseline interferometry. A&A 499, 331–335 (2009)ADSzbMATHCrossRefGoogle Scholar
  214. 214.
    S.B. Lambert, C. Le Poncin-Lafitte, Improved determination of \(\gamma \) by VLBI. A&A 529, A70 (2011)ADSCrossRefGoogle Scholar
  215. 215.
    A.S. Konopliv, S.W. Asmar, W.M. Folkner, Ö. Karatekin, D.C. Nunes, S.E. Smrekar, C.F. Yoder, M.T. Zuber, Mars high resolution gravity fields from mro, mars seasonal gravity, and other dynamical parameters. Icarus 211(1), 401–428 (2011)ADSCrossRefGoogle Scholar
  216. 216.
    R.S. Park, W.M. Folkner, A.S. Konopliv, J.G. Williams, D.E. Smith, M.T. Zuber, Precession of mercury’s perihelion from ranging to the MESSENGER spacecraft. AJ 153, 121 (2017)ADSCrossRefGoogle Scholar
  217. 217.
    E.G. Adelberger, B.R. Heckel, A.E. Nelson, Tests of the gravitational inverse-square law. Ann. Rev. Nucl. Part. Sci. 53, 77–121 (2003)ADSCrossRefGoogle Scholar
  218. 218.
    P. Jordan, Formation of the stars and development of the universe. Nature 164, 637–640 (1949)ADSzbMATHCrossRefGoogle Scholar
  219. 219.
    C. Brans, R.H. Dicke, Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124, 925–935 (1961)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  220. 220.
    T. Damour, G. Esposito-Farese, Tensor-multi-scalar theories of gravitation. Class. Quantum Gravity 9, 2093–2176 (1992)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  221. 221.
    J. Khoury, A. Weltman, Chameleon cosmology. Phys. Rev. D 69(4), 044026 (2004)ADSMathSciNetCrossRefGoogle Scholar
  222. 222.
    J. Khoury, A. Weltman, Chameleon fields: awaiting surprises for tests of gravity in space. Phys. Rev. Lett. 93(17), 171104 (2004)ADSCrossRefGoogle Scholar
  223. 223.
    A. Hees, A. Füzfa, Combined cosmological and solar system constraints on chameleon mechanism. Phys. Rev. D 85(10), 103005 (2012)ADSCrossRefGoogle Scholar
  224. 224.
    K. Hinterbichler, J. Khoury, Screening long-range forces through local symmetry restoration. Phys. Rev. Lett. 104(23), 231301 (2010)ADSCrossRefGoogle Scholar
  225. 225.
    K. Hinterbichler, J. Khoury, A. Levy, A. Matas, Symmetron cosmology. Phys. Rev. D 84(10), 103521 (2011)ADSCrossRefGoogle Scholar
  226. 226.
    A.I. Vainshtein, To the problem of nonvanishing gravitation mass. Phys. Lett. B 39, 393–394 (1972)ADSCrossRefGoogle Scholar
  227. 227.
    E. Babichev, C. Deffayet, R. Ziour, The vainshtein mechanism in the decoupling limit of massive gravity. Jo. High Energy Phys. 5, 98 (2009)ADSzbMATHCrossRefGoogle Scholar
  228. 228.
    E. Babichev, C. Deffayet, R. Ziour, k-MOUFLAGE gravity. Int. J. Mod. Phys. D 18, 2147–2154 (2009)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  229. 229.
    E. Babichev, C. Deffayet, G. Esposito-Farèse, Constraints on shift-symmetric scalar-tensor theories with a vainshtein mechanism from bounds on the time variation of G. Phys. Rev. Lett. 107(25), 251102 (2011)ADSCrossRefGoogle Scholar
  230. 230.
    F. Hofmann, J. Müller, Relativistic tests with lunar laser ranging. Class. Quantum Gravity 35(3), 035015 (2018)ADSzbMATHCrossRefGoogle Scholar
  231. 231.
    M.D. Seifert, Vector models of gravitational Lorentz symmetry breaking. Phys. Rev. D 79(12), 124012 (2009)ADSCrossRefGoogle Scholar
  232. 232.
    V.A. Kostelecký, R. Potting, Gravity from local Lorentz violation. Gen. Relativ. Gravit. 37, 1675–1679 (2005)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  233. 233.
    V.A. Kostelecký, R. Potting, Gravity from spontaneous Lorentz violation. Phys. Rev. D 79(6), 065018 (2009)ADSMathSciNetCrossRefGoogle Scholar
  234. 234.
    B. Altschul, Q.G. Bailey, V.A. Kostelecký, Lorentz violation with an antisymmetric tensor. Phys. Rev. D 81(6), 065028 (2010)ADSCrossRefGoogle Scholar
  235. 235.
    R. Gambini, J. Pullin, Nonstandard optics from quantum space-time. Phys. Rev. D 59(12), 124021 (1999)ADSMathSciNetCrossRefGoogle Scholar
  236. 236.
    V.A. Kostelecký, M. Mewes, Electrodynamics with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 80(1), 015020 (2009)ADSCrossRefGoogle Scholar
  237. 237.
    S.M. Carroll, J.A. Harvey, V.A. Kostelecký, C.D. Lane, T. Okamoto, Noncommutative field theory and Lorentz violation. Phys. Rev. Lett. 87(14), 141601 (2001)ADSMathSciNetCrossRefGoogle Scholar
  238. 238.
    V.A. Kostelecký, R. Lehnert, Stability, causality, and Lorentz and CPT violation. Phys. Rev. D 63(6), 065008 (2001)ADSMathSciNetCrossRefGoogle Scholar
  239. 239.
    Q.G. Bailey, V.A. Kostelecký, R. Xu, Short-range gravity and Lorentz violation. Phys. Rev. D 91(2), 022006 (2015)ADSMathSciNetCrossRefGoogle Scholar
  240. 240.
    V.A. Kostelecký, J.D. Tasson, Constraints on Lorentz violation from gravitational Čerenkov radiation. Phys. Lett. B 749, 551–559 (2015)ADSCrossRefGoogle Scholar
  241. 241.
    V.A. Kostelecký, M. Mewes, Testing local Lorentz invariance with gravitational waves. Phys. Lett. B 757, 510–514 (2016)ADSzbMATHCrossRefGoogle Scholar
  242. 242.
    Q.G. Bailey, D. Havert, Velocity-dependent inverse cubic force and solar system gravity tests. Phys. Rev. D 96(6), 064035 (2017)ADSMathSciNetCrossRefGoogle Scholar
  243. 243.
    H. Müller, S.-W. Chiow, S. Herrmann, S. Chu, K.-Y. Chung, Atom-interferometry tests of the isotropy of post-Newtonian gravity. Phys. Rev. Lett. 100(3), 031101 (2008)ADSCrossRefGoogle Scholar
  244. 244.
    K.-Y. Chung, S.-W. Chiow, S. Herrmann, S. Chu, H. Müller, Atom interferometry tests of local Lorentz invariance in gravity and electrodynamics. Phys. Rev. D 80(1), 016002 (2009)ADSCrossRefGoogle Scholar
  245. 245.
    C.-G. Shao, Y.-F. Chen, R. Sun, L.-S. Cao, M.-K. Zhou, Z.-K. Hu, C. Yu, H. Müller, Limits on Lorentz violation in gravity from worldwide superconducting gravimeters. Phys. Rev. D 97(2), 024019 (2018)ADSMathSciNetCrossRefGoogle Scholar
  246. 246.
    A. Hees, Q.G. Bailey, C. Le Poncin-Lafitte, A. Bourgoin, A. Rivoldini, B. Lamine, F. Meynadier, C. Guerlin, P. Wolf, Testing Lorentz symmetry with planetary orbital dynamics. Phys. Rev. D 92, 064049 (2015)ADSCrossRefGoogle Scholar
  247. 247.
    C. Le Poncin-Lafitte, A. Hees, S. lambert, Lorentz symmetry and very long baseline interferometry. Phys. Rev. D 94(12), 125030 (2016)Google Scholar
  248. 248.
    J.B.R. Battat, J.F. Chandler, C.W. Stubbs, Testing for Lorentz violation: constraints on standard-model-extension parameters via lunar laser ranging. Phys. Rev. Lett. 99(24), 241103 (2007)ADSCrossRefGoogle Scholar
  249. 249.
    A. Bourgoin, A. Hees, S. Bouquillon, C. Le Poncin-Lafitte, G. Francou, M.-C. Angonin, Testing Lorentz symmetry with lunar laser ranging. Phys. Rev. Lett. 117(24), 241301 (2016)ADSMathSciNetCrossRefGoogle Scholar
  250. 250.
    M. Milgrom, A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. ApJ 270, 365–370 (1983)ADSCrossRefGoogle Scholar
  251. 251.
    M. Milgrom, A modification of the Newtonian dynamics - implications for galaxy systems. ApJ 270, 384 (1983)ADSCrossRefGoogle Scholar
  252. 252.
    M. Milgrom, A modification of the Newtonian dynamics - implications for galaxies. ApJ 270, 371–389 (1983)ADSCrossRefGoogle Scholar
  253. 253.
    J.-P. Bruneton, G. Esposito-Farèse, Field-theoretical formulations of MOND-like gravity. Phys. Rev. D 76(12), 124012 (2007)ADSCrossRefGoogle Scholar
  254. 254.
    A. Hees, B. Famaey, G.W. Angus, G. Gentile, Combined solar system and rotation curve constraints on MOND. MNRAS 455, 449–461 (2016)ADSCrossRefGoogle Scholar
  255. 255.
    R.A. Swaters, R.H. Sanders, S.S. McGaugh, Testing modified Newtonian dynamics with rotation curves of dwarf and low surface brightness galaxies. ApJ 718, 380–391 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Aurélien Hees
    • 1
    Email author
  • Adrien Bourgoin
    • 2
  • Pacome Delva
    • 1
  • Christophe Le Poncin-Lafitte
    • 1
  • Peter Wolf
    • 1
  1. 1.SYRTEObservatoire de Paris, Université PSL, CNRS, Sorbonne Université, LNEParisFrance
  2. 2.Dipartimento di Ingegneria IndustrialeUniversity of BolognaBolognaItaly

Personalised recommendations