Advertisement

Anholonomity in Pre-and Relativistic Geodesy

  • Erik W. GrafarendEmail author
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 196)

Abstract

I was invited to speak about anholonomity or the problem to find coordinate reference systems which are differentiable. In general non-differentiable functions like (pseudo) orthonormal reference systems are differentiable forms being not classical functions. These differentiable forms are the basis of Elie Cartan’s “exterior calculus”. Geodetic examples are extensively reviewed in the context of the pre-and relativistic Geodesy.

Notes

Acknowledgements

C. Lämmerzahl and D. Pützfeld, /Bremen/ invited me to speak about anholonomity in the context of Relativistic Geodesy within the WE-Heraeus Seminar. Special thanks go to D. Pützfeld, F.W. Hehl/Cologne/ and H. Quevedo/Mexico City/ for their helpful comments. In addition, I am grateful for the support of J. Müller (Hanover) on the International Reference Ellipsoid and to S. M. Kopeikin (Columbia/Missouri) on studying Relativistic Equilibrium Figures and the relativistic theory of the Geoid. Last, but not least, I am grateful to M.A. Javaid(Stuttgart) for his expert typing.

References

  1. 1.
    J.D. Zund, Foundations of Differential Geodesy (Springer, Berlin, 1994)CrossRefGoogle Scholar
  2. 2.
    P.J.G. Teunissen, Anholonomity when using the development method for the reduction of observations to the reference ellipsoid. Bull. Geod. 56, 356–363 (1982)CrossRefGoogle Scholar
  3. 3.
    M. Blagojevic, F.W. Hehl, J. Garecki, Y.N. Obukhov, Real null coframes in general relativity and GPS coordinates. Phys. Rev. 65(4), 044018 (2002)ADSMathSciNetGoogle Scholar
  4. 4.
    E.W. Grafarend, F.W. Krumm, Map Projections: Cartographic Infromation Systems (Springer, Berlin, 2006)zbMATHGoogle Scholar
  5. 5.
    E.W. Grafarend, W. Kuehnel, A minimum atlas for the rotation group SO(3). J. Geomath. 2(2011), 113–122 (2011)CrossRefGoogle Scholar
  6. 6.
    E.W. Grafarend, A.A. Ardalan, Ellipsoidal geoidal undulations (ellipsoidal Bruns formula): case study. J. Geod. 75, 544–552 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    F. Sanso, P. Vanicek, The orthometric height and the holonomity problem. J. Geod. 80, 225–232 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    J.A. Schouten, Ricci-Calculus, 2nd edn. (Springer, Heidelberg, 1954), p. 127CrossRefGoogle Scholar
  9. 9.
    R. Cushmann, H. Duistermaat, J. Sniatycki, Geometry of Nonholonomically Constrained Systems (World Scientific, Singapore, 2010), p. 404zbMATHGoogle Scholar
  10. 10.
    S. Sternberg, Curvature in Mathematical and Physics (Dover Publication, Mineola, 2012)zbMATHGoogle Scholar
  11. 11.
    F. Hehl, Der Spin und Torsion in der Allgemeinen Relativitätstheorie. Abh. Braunschweigische Wiss. Ges. 18, 98 (1966)Google Scholar
  12. 12.
    F. Hehl, Der Spin und Torsion in der Allgemeinen Relativitätstheorie. Universität Clausthal, Habilitationsschrift Techn (1970)Google Scholar
  13. 13.
    F. Heh, E. Kröner, Über den Spin in der Allgemeinen Relativitätstheorie. Z. Phys. 187, 478 (1965)ADSCrossRefGoogle Scholar
  14. 14.
    A. Marussi, Fondements de geometrie differentielle absolue du champ potential terrestre. Bull. Geod. 14, 411–439 (1949)MathSciNetCrossRefGoogle Scholar
  15. 15.
    E.W. Grafarend, Three dimensional geodesy I: the holonomity problem. Z. Vermesssungswesen 100, 269–281 (1975)zbMATHGoogle Scholar
  16. 16.
    P. Defrise, E.W. Grafarend, Torsion and anholonomity of geodetic frames. Bollettino di Geodesia e Scienze Affini 35, 153–160 (1976)Google Scholar
  17. 17.
    M. Caputo, The Gravity Field of the Earth (Academic, New York, 1967)Google Scholar
  18. 18.
    A. Marussi, Natural reference systems and their reciprocals in geodesy, Technical report, Publ. T.J, Kukkamaki 70th Birthday, Publ. Finnish Geodetic Institute, Nr. 89, Helsinki (1979)Google Scholar
  19. 19.
    A. Marussi, Intrinsic Geodesy (trans: Reilly WI) (Springer, Berlin, 1985)CrossRefGoogle Scholar
  20. 20.
    M. Hotine, in Differential Geodesy (Edited with commentary by J. D. Zund) (Springer, Berlin, 1991)Google Scholar
  21. 21.
    H. Moritz, The Hamiltonian structure of refraction and the gravity field. Manuscripta Geod. 20, 52–60 (1994)Google Scholar
  22. 22.
    H. Goenner, E.W. Grafarend, R.J. You, Newton mechanics as geodesic flow on maupertuis’ manifold; the local isometric embedding into flat spaces. Manuscripta Geod. 19, 339–345 (1994)Google Scholar
  23. 23.
    E.W. Grafarend, Differential geometry of the gravity field. Manuscripta Geod. 11, 29–37 (1986)ADSzbMATHGoogle Scholar
  24. 24.
    E. Hunziker, Lotlinienkrünunung und Projektion eines Punktes oder einer Strecke auf das Geoid, Schweiz. Z Vermessung. Kulturtechnik und Photogrammetrie 58, 144–152 (1960)Google Scholar
  25. 25.
    J. Engels, E. Grafarend, The gravitational field of topographic/isostatic masses and the hypothesis of mass condensation. Surv. Geophys. 140, 495–524 (1993)Google Scholar
  26. 26.
    J. Engels, E. Grafarend, P. Sorcik, The gravitational field of topographic-isostatic masses and the hypothesis of mass condensation II - the topographic-isostatic Geoid. Sun Geophys. 17, 41–66 (1996)ADSCrossRefGoogle Scholar
  27. 27.
    E.W. Grafarend, J. Engels, P. Sorcik, The gravitational field of topographic/isostatic masses and the hypothesis of mass condensation. Part I and II, Technical report, Department of Geodesy, Stuttgart (1995)Google Scholar
  28. 28.
    N. Grossman, Holonomic measurables in geodesy. J. Geophys. Res. 79, 689–694 (1974)ADSCrossRefGoogle Scholar
  29. 29.
    N. Grossman, The pull-back operation in physical geodesy and the behaviour of plumblines. Manuscripta Geod. 3, 55–105 (1978)zbMATHGoogle Scholar
  30. 30.
    I.I. Mueller, E. Grafarend, H.B. Papo, B. Richter, Investigations on the hierarchy of reference frames in geodesy and geodynamic, Technical Report 289, Department of Geodetic Science, The Ohio State University (1979)Google Scholar
  31. 31.
    I.I. Mueller, E. Grafarend, H.B. Papo, B. Richter, Concepts for reference frames in geodesy and geodynamics: the reference directions. Bull. Geod. 53(289), 195–213 (1979)MathSciNetGoogle Scholar
  32. 32.
    E.W. Grafarend, Spacetime geodesy. Boll, di Geodesia e Scienze Affini 38, 551–589 (1975)Google Scholar
  33. 33.
    E.W. Grafarend, Die Beobachtungsgleichungen der dreidimen-sionalen Geodasie im Geometrie- and Schwereraum, ein Beitrag zur operationellen Geodasie. Zeitschrift für Vermessungswesen 106, 411–429 (1981)Google Scholar
  34. 34.
    M. Fujimoto, E. Grafarend, Spacetime coordinates in the geodetic reference frame. in Relativity in Celestial Mechanics and Astronomy, ed. by J. Kovalevsky, V.A. Brumberg (IAU, 1986), pp. 269–276Google Scholar
  35. 35.
    R. Penrose, W. Rindler, Spinors and Space-Time, vol. 1 (Cambridge University Press, Cambridge, 1987)zbMATHGoogle Scholar
  36. 36.
    A. Marussi, Les principes de la geodesie intrinseque. Bull. Geod. 19, 68–76 (1951)MathSciNetCrossRefGoogle Scholar
  37. 37.
    A. Marussi, Fondamenti di geodesia intrinseca. Publicazioni della Commissione Geodetica Italiana, Ser. HI 7, 1–47 (1951)Google Scholar
  38. 38.
    A. Marussi, Su alcune propriety integrali delle rappresen-tazioni conformi di superfici su superfici, rendiconti della classe di scienze fisiche, matematiche e naturali. Accademia Nazionale dei Lincei (Roma), Ser. VIII 10, 307–310 (1951)MathSciNetzbMATHGoogle Scholar
  39. 39.
    A. Marussi, La coordination des system geodesiques. Bull. Geod. 43, 16–19 (1957)MathSciNetCrossRefGoogle Scholar
  40. 40.
    A. Marussi, Dalla geodesia classica alla geodesia in tre dimensioni. Bollettini di Geodesia e Scienze Affini, anno XVIII, 485–495 (1959)Google Scholar
  41. 41.
    A. Marussi, The tidal field of a planet and the related intrinsic reference systems. Geophys. J. R. Astron. Soc. 56, 409–417 (1979)ADSCrossRefGoogle Scholar
  42. 42.
    A. Marussi, Intrinsic geodesy (a revised and edited version of his 1952 lectures by J.D. Zund), Technical report, Report No. 390, Department of Geodetic Science and Surveying, The Ohio State University, Columbus (1988)Google Scholar
  43. 43.
    B.H. Chovitz. Hotine’s mathematical geodesy, in IV Symposium on Mathematical Geodesy (1969), pp. 159–172Google Scholar
  44. 44.
    B.H. Chovitz, Generalized three-dimensional conformal transformations. Bull. Geod. 104, 159–163 (1972)CrossRefGoogle Scholar
  45. 45.
    B.H. Chovitz, The influence of Hotine’s mathematical geodesy. Bollettino di Geodesia e Scienze Affini, anno XLI, 57–64 (1982)Google Scholar
  46. 46.
    E. Doukakis, Remark on time and reference frames. Bull. Geod. 81 (1978)Google Scholar
  47. 47.
    E.W. Grafarend, The object of anholonomity and a generalized Riemannian geometry for geodesy. Bollettino di Geofisica Teorica ed Applicata 13, 241–253 (1971)Google Scholar
  48. 48.
    E.W. Grafarend, Three dimensional geodesy and gravity gradients, Technical report, Ohio State University, report no. 174, Columbus, Ohio, USA (1972)Google Scholar
  49. 49.
    E.W. Grafarend, Le theoreme de conservation de la courbure et la torsion or attempts at a unified theory of geodesy. Bull. Geod. 109, 237–260 (1973)CrossRefGoogle Scholar
  50. 50.
    E.W. Grafarend, Gravity gradients and three dimensional net adjustment without ellipsoidal reference, Technical report, The Ohio State University, Report No. 202, Columbus (1973)Google Scholar
  51. 51.
    E.W. Grafarend, in Cartan frames and a foundation of Physical Geodesy, Methoden and Verfahren der Mathematischen Physik, Bd 12, ed. by B. Brosowski, E. Martensen. BI-Verlag, Mathematical Geodesy, Mannheim (1975), pp. 179–208Google Scholar
  52. 52.
    E.W. Grafarend, Threedimensional geodesy iii: refraction. Bollettino di Geodesia e Scienze Affini 35, 153–160 (1976)ADSzbMATHGoogle Scholar
  53. 53.
    E.W. Grafarend, Geodasie - Gausssche oder Cartansche Flaähengeometrie? Allgemeine Vermessungs-Nachrichten 4, 139–150 (1977)Google Scholar
  54. 54.
    E.W. Grafarend, Der Einfluss der Lotrichtung auf lokale geodätische Netze. Z. Vermessungswesen 112, 413–424 (1987)Google Scholar
  55. 55.
    E.W. Grafarend, Tensor algebra, linear algebra, multi-linear algebra, Technical report, 344 references, Department of Geodesy and Geoinformatics, Stuttgart University Stuttgart (2004)Google Scholar
  56. 56.
    E. Livieratos, On the geodetic singularity problem. Manuscripta Geod. 1, 269–292 (1976)Google Scholar
  57. 57.
    F. Bocchio, Su alcune applicazioni di interesse geode-tico delle connessioni non simmetriche, Rendiconti della classe di scienze Fisiche, matematiche e naturali. Accademia Nazionale dei lincei (Roma) Ser. VIII 48, 343–351 (1970)MathSciNetzbMATHGoogle Scholar
  58. 58.
    F. Bocchio, From differential geodesy to differential geophysics. Geophys. J. R. Astron. Soc. 39, 1–10 (1974)ADSCrossRefGoogle Scholar
  59. 59.
    F. Bocchio, The holonomity problem in geophysics. Bollettino di Geodesia e Scienze Affini, anno XXXIV, 453–459 (1975)Google Scholar
  60. 60.
    F. Bocchio, Some of Marussi’s contributions in the field of two-dimensional and three dimensional representation. Bollettino di Geodesia e Scienze Affini, anno XXXVII, 441–450 (1978)Google Scholar
  61. 61.
    F. Bocchio, An inverse geodetic singularity problem. Geophys. J. R. Astron. Soc. 67, 181–187 (1981)ADSCrossRefGoogle Scholar
  62. 62.
    F. Bocchio, Geodetic singularities in the gravity field of a non-homogenious planet. Geophys. J. R. Astron. Soc. 68, 643–652 (1982)ADSCrossRefGoogle Scholar
  63. 63.
    F. Bocchio, Geodetic singularities, reviews of geophysics and space physics, in Advances in Geodesy, vol. 20, ed. by R.H. Rapp, E.W. Grafarend (American Geophysical Union, Washington, 1982), pp. 399–409Google Scholar
  64. 64.
    F. Sanso, The geodetic boundary value problem in gravity space, Memorie Scienze Fisiche (Academia Nationale dei Lincei, Roma, 1997)Google Scholar
  65. 65.
    G. Ricci, Lezioni sulla teoria delle superficie (F. Drucker, Verona-Padova, 1989)zbMATHGoogle Scholar
  66. 66.
    G. Ricci, Opere, in Edizioni Cremonese, 2 (1956/1957)Google Scholar
  67. 67.
    G. Ricci, T. Levi-Civita, Methodes de calcul differentiel absolu et leurs applications. Math. Ann. 54, 125–201 (1901)CrossRefGoogle Scholar
  68. 68.
    H. Flanders, in Differential Forms with Applications to the Physical Sciences. (Academic, New York, 1963)Google Scholar
  69. 69.
    H. Weyl, Raum-Zeit-Materie: Vorlesungen überiber allgemeine Relativitätstheorie, 5th edn. (Springer, Berlin, 1918)zbMATHGoogle Scholar
  70. 70.
    H. Weyl, Gruppentheorie and Quantenmechanik (Verlag S. Hirzel, Leipzig, 1928)zbMATHGoogle Scholar
  71. 71.
    J.A. Schouten, Tensor Analysis for Physicists (Clarendon, Oxford, 1951)zbMATHGoogle Scholar
  72. 72.
    J.D. Zund, Tensorial methods in classical differential geometry - i: basic principles. Tensor NS 47, 74–82 (1988)MathSciNetzbMATHGoogle Scholar
  73. 73.
    J.D. Zund, Tensorial methods in classical differential geometry - i: basic surface tensors. Tensor NS 47, 83–92 (1988)MathSciNetzbMATHGoogle Scholar
  74. 74.
    J.D. Zund, Differential geodesy of the Eötvös torsion balance. Manuscripta Geod. 14, 13–18 (1989)Google Scholar
  75. 75.
    J.D. Zund, The assertion of hotine on the integrabil-ity conditions in his general coordinate system. Manuscripta Geod. 15, 373–382 (1990)Google Scholar
  76. 76.
    J.D. Zund, An essay on the mathematical foundations of the Marussi-Hotine approach to geodesy. Bollettino di Geodesia e Scienze Affini anno XLIX, 113–179 (1990)Google Scholar
  77. 77.
    J.D. Zund, The Hotine problem in differential geodesy. Manuscripta Geod. 15, 373–382 (1990)Google Scholar
  78. 78.
    J.D. Zund, The mathematical foundations of the hotine-marussi approach to geodesy. Bollettino di Geodesia e Scienze Affini anno LI, 125–138 (1992)Google Scholar
  79. 79.
    J.D. Zund, W. Moore, Hotine’s conjecture in differential geodesy. Bull. Goodesique 61, 209–222 (1987)ADSMathSciNetCrossRefGoogle Scholar
  80. 80.
    J.D. Zund, J.M. Wilkes, The significance and generalization of two transformation formulas in Hotine’s mathematical geodesy. Bollettino di Geodesia e Scienze Affini anno XLVII, 77–85 (1998)Google Scholar
  81. 81.
    J.M. Wilkes, J.D. Zund, Group-theoretical approach to the Schwarzschild solution. Am. J. Phys. 50, 25–27 (1982)ADSCrossRefGoogle Scholar
  82. 82.
    M. Hotine, Metrical properties of the Earth’s gravitational field, report to i.a.g, Technical report, Toronto Assembly 33-64 of Hotine (1957)Google Scholar
  83. 83.
    M. Hotine, Geodesic coordinate systems, Technical report, Venice Symposium, 65-89 of Hotine (1957)Google Scholar
  84. 84.
    M. Hotine, A primer on non-classical geodesy, Technical report, Venice Symposium, 91–130 (1959)Google Scholar
  85. 85.
    M. Hotine, The orthomorphic projection of the spheroid. Emp. Surv. Rev. 8, 300–311 (1967)CrossRefGoogle Scholar
  86. 86.
    M. Hotine, Mathematical geodesy, U.S. Department of Commerce Washington, D.C. (1969)Google Scholar
  87. 87.
    N. Grossman, Is the geoid a trapped surface? Bollettino di Geodesiae Scienze Affini anno XXXIV, 173–183 (1978)Google Scholar
  88. 88.
    N. Grossman, The nature of space near the Earth. Bollettino di Geodesia e Scienze Affini anno XXXV, 413–424 (1979)Google Scholar
  89. 89.
    P. Defrise, Meteorologie et geometrie differentiae. Institute Royal Moteorologique de Belgique, Bruxelles, A 91 (1975)Google Scholar
  90. 90.
    P. Defrise, Sur des applications de la geometrie differentielle en Meteorologie et en Goodesie. Bollettino di Geodesia e Scienze Affini 37, 185–196 (1978)Google Scholar
  91. 91.
    P. Defrise, E.W. Grafarend, Torsion and Anholonomity of geodetic frames. Bollettino di Geodesia e Scienze Affini 35, 81–92 (1976)Google Scholar
  92. 92.
    P. Holota, Z. Nadenik, Les formes differentielles exterieures dans la Geodesie ii: Courbure moyenne. Studia geoph. at geod. 15, 106–112 (1971)Google Scholar
  93. 93.
    P. Pizzetti, Un principio fondamentale nello studio delle studio delle superfici di livello terrestri. Rendiconti della Reale Accademia dei Lincei (Roma) 10, 35–39 (1901)zbMATHGoogle Scholar
  94. 94.
    P. Pizzetti. Höher Geodäsie, Enzyklopädie der Mathematischen Wissenschaften Band VI. Geodasie und Geophysik, 125–239, B.G. Teubner, Leipzig, Erster Teil, 1906Google Scholar
  95. 95.
    P. Pizzetti, Principii della teoria mecannica della figura dei pianeti (E. Spoerri, Pisa, 1913)zbMATHGoogle Scholar
  96. 96.
    P. Stäckel, Über die integration der Hamilton-Jacobischen Differentialgleichung mittelst Separation der Variablen (Habilitationsschrift, Halle, 1891)Google Scholar
  97. 97.
    P. Stäckel, Über die Bewegung eines Punktes in einer n-fachen Mannigfaltigkeit. Math. Ann. 42, 537–563 (1893)MathSciNetCrossRefGoogle Scholar
  98. 98.
    P. Vanicek, To the problem of holonomity of height systems in: Letter to the Editor, vol 36. The Canadian Surveos (1982), pp. 122–123Google Scholar
  99. 99.
    S. Roberts, On the parallel surfaces of conicoids and conics. Proc. Lond. Math. Soc. 1(4), 57–91 (1872)MathSciNetzbMATHGoogle Scholar
  100. 100.
    S. Roberts, On parallel surfaces. Proc. Lond. Math. Soc. 1(4), 218–235 (1973)MathSciNetzbMATHGoogle Scholar
  101. 101.
    V. Schwarze, Satellitengeodätische Positionierung in der Relativistischen Raum-Zeit. Ph.D. Thesis, Deutsche Geodätische Kommission, Bayerische Akademie der Wissenschaften, München (1995)Google Scholar
  102. 102.
    W. Neutsch, Koordinaten-Theorie und Anwendungen (Spektrum Akademischer Varlag, Heidelberg, 1995)Google Scholar
  103. 103.
    Y. Georgiadou, E. Livieratos, Anholonomity of the reciprocal natural frame in the normal gravity field of the Earth. Geophys. J. R. Astron. Soc 67, 177–179 (1981)ADSCrossRefGoogle Scholar
  104. 104.
    Z. Nadenik, Les forms differentielles exterieures dans la Geodesie i: coubure de Gauss. Studia Geoph. et Geod. 15, 1–6 (1971)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Geodesy and GeoinformaticsFaculty of Aerospace Engineering and Geodesy, Faculty of Mathematics and PhysicsStuttgartGermany

Personalised recommendations