Advertisement

General Relativistic Gravity Gradiometry

  • Bahram MashhoonEmail author
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 196)

Abstract

Gravity gradiometry within the framework of the general theory of relativity involves the measurement of the elements of the relativistic tidal matrix, which is theoretically obtained via the projection of the spacetime curvature tensor upon the nonrotating orthonormal tetrad frame of a geodesic observer. The behavior of the measured components of the curvature tensor under Lorentz boosts is briefly described in connection with the existence of certain special tidal directions. Relativistic gravity gradiometry in the exterior gravitational field of a rotating mass is discussed and a gravitomagnetic beat effect along an inclined spherical geodesic orbit is elucidated.

References

  1. 1.
    H.J. Paik, Superconducting tensor gravity gradiometer for satellite geodesy and inertial navigation. J. Astronaut. Sci. 29, 1 (1981)ADSGoogle Scholar
  2. 2.
    H.A. Chan, M.V. Moody, H.J. Paik, Null test of the gravitational inverse square law. Phys. Rev. Lett. 49, 1745 (1982)ADSCrossRefGoogle Scholar
  3. 3.
    H.A. Chan, M.V. Moody, H.J. Paik, Superconducting gravity gradiometer for sensitive gravity measurements. II. Experiment. Phys. Rev. D 35, 3572 (1987)ADSCrossRefGoogle Scholar
  4. 4.
    M.J. Snadden, J.M. McGuirk, P. Bouyer, K.G. Haritos, M.A. Kasevich, Measurement of the Earth’s gravity gradient with an atom interferometer-based gravity gradiometer. Phys. Rev. Lett. 81, 971 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    J.M. McGuirk, G.T. Foster, J.B. Fixler, M.J. Snadden, M.A. Kasevich, Sensitive absolute-gravity gradiometry using atom interferometry. Phys. Rev. A 65, 033608 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    T. Levi-Civita, Sur l’écart géodésique. Math. Ann. 97, 291 (1926)CrossRefGoogle Scholar
  7. 7.
    J.L. Synge, On the geometry of dynamics. Phil. Trans. R. Soc. Lond. A 226, 31–106 (1926)ADSCrossRefGoogle Scholar
  8. 8.
    J.L. Synge, Relativity: The General Theory (North-Holland, Amsterdam, 1960)zbMATHGoogle Scholar
  9. 9.
    B. Mashhoon, Tidal radiation. Astrophys. J. 216, 591–609 (1977)ADSCrossRefGoogle Scholar
  10. 10.
    C. Chicone, B. Mashhoon, The generalized Jacobi equation. Class. Quantum Gravity 19, 4231–4248 (2002)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    C. Chicone, B. Mashhoon, Ultrarelativistic motion: Inertial and tidal effects in Fermi coordinates. Class. Quantum Gravity 22, 195–205 (2005)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    C. Chicone, B. Mashhoon, Explicit Fermi coordinates and tidal dynamics in de Sitter and Gödel spacetimes. Phys. Rev. D 74, 064019 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    D. Bini, L. Lusanna, B. Mashhoon, Limitations of radar coordinates. Int. J. Mod. Phys. D 14, 1413–1429 (2005)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    B. Mashhoon, J.C. McClune, Relativistic tidal impulse. Mon. Not. R. Astron. Soc. 262, 881–888 (1993)ADSCrossRefGoogle Scholar
  15. 15.
    C. Chicone, B. Mashhoon, B. Punsly, Relativistic motion of spinning particles in a gravitational field. Phys. Lett. A 343, 1–7 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    C. Chicone, B. Mashhoon, Tidal acceleration of ultrarelativistic particles. Astron. Astrophys. 437, L39–L42 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    C. Chicone, B. Mashhoon, B. Punsly, Dynamics of relativistic flows. Int. J. Mod. Phys. D 13, 945–959 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    D. Bini, C. Chicone, B. Mashhoon, Relativistic tidal acceleration of astrophysical jets. Phys. Rev. D 95, 104029 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    F.A.E. Pirani, On the physical significance of the Riemann tensor. Acta Phys. Pol. 15, 389–405 (1956)ADSMathSciNetzbMATHGoogle Scholar
  20. 20.
    P. Szekeres, The gravitational compass. J. Math. Phys. (N.Y.) 6, 1387 (1965)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    J. Podolský, R. Švarc, Interpreting spacetimes of any dimension using geodesic deviation. Phys. Rev. D 85, 044057 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    R.F. Crade, G.S. Hall, The deviation of timelike geodesics in space-time. Phys. Lett. A 85, 313–315 (1981)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    B. Mashhoon, Tidal gravitational radiation. Astrophys. J. 185, 83–86 (1973)ADSCrossRefGoogle Scholar
  24. 24.
    B. Mashhoon, On tidal phenomena in a strong gravitational field. Astrophys. J. 197, 705–716 (1975)ADSCrossRefGoogle Scholar
  25. 25.
    C.W.F. Everitt et al., Gravity probe B: final results of a space experiment to test general relativity. Phys. Rev. Lett. 106, 221101 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    V.B. Braginsky, A.G. Polnarev, Relativistic spin-quadrupole gravitational effect. JETP Lett. 31, 415–418 (1980)ADSGoogle Scholar
  27. 27.
    B. Mashhoon, D.S. Theiss, Relativistic tidal forces and the possibility of measuring them. Phys. Rev. Lett. 49, 1542 (1982)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    B. Mashhoon, D.S. Theiss, Erratum: relativistic tidal forces and the possibility of measuring them. Phys. Rev. Lett. 49, 1960 (1982)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    H.J. Paik, Detection of the gravitomagnetic field using an orbiting superconducting gravity gradiometer: principles and experimental considerations. Gen. Relativ. Gravit. 40, 907–919 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    H.J. Paik, B. Mashhoon, C.M. Will, Detection of the gravitomagnetic field using an orbiting superconducting gravity gradiometer, in Experimental Gravitational Physics, ed. by P.F. Michelson, Hu. En-ke, G. Pizzella (World Scientific, Singapore, 1988), pp. 229–244Google Scholar
  31. 31.
    B. Mashhoon, H.J. Paik, C.M. Will, Detection of the gravitomagnetic field using an orbiting superconducting gravity gradiometer. Theoretical principles. Phys. Rev. D 39, 2825 (1989)ADSCrossRefGoogle Scholar
  32. 32.
    B. Mashhoon, Wave propagation in a gravitational field. Phys. Lett. A 122, 299–304 (1987)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    B. Mashhoon, On the strength of a gravitational field. Phys. Lett. A 163, 7–14 (1992)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, E. Herlt, Exact Solutions of Einstein’s Field Equations, 2nd edn. (Cambridge University Press, Cambridge, 2003)CrossRefGoogle Scholar
  35. 35.
    J.B. Griffiths, J. Podolský, Exact Space-Times in Einstein’s General Relativity (Cambridge University Press, Cambridge, 2009)CrossRefGoogle Scholar
  36. 36.
    J.K. Beem, P.E. Parker, Sectional curvature and tidal accelerations. J. Math. Phys. (N.Y.) 31, 819–827 (1990)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    G.S. Hall, A.D. Hossack, Some remarks on sectional curvature and tidal accelerations. J. Math. Phys. (N.Y.) 34, 5897–5899 (1993)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    S. Chandrasekhar, The Mathematical Theory of Black Holes (Clarendon, Oxford, 1983)zbMATHGoogle Scholar
  39. 39.
    D. Bini, B. Mashhoon, Relativistic gravity gradiometry. Phys. Rev. D 94, 124009 (2016)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    J.-A. Marck, Solution to the equations of parallel transport in Kerr geometry; tidal tensor. Proc. R. Soc. Lond. A 385, 431 (1983)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    B. Mashhoon, On a new gravitational effect of a rotating mass. Gen. Relativ. Gravit. 16, 311 (1984)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    D.S. Theiss, Ph.D. thesis, University of Cologne, Köln, Germany (1984)Google Scholar
  43. 43.
    D.S. Theiss, A general relativistic effect of a rotating spherical mass and the possibility of measuring it in a space experiment. Phys. Lett. A 109, 19–22 (1985)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    B. Mashhoon, Gravitational effects of rotating masses. Found. Phys. (Bergmann Festschrift), 15, 497 (1985)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    C.A. Blockley, G.E. Stedman, Gravitomagnetic effects along polar geodesics about a slowly rotating spherical mass in the PPN formalism. Phys. Lett. A 147, 161–164 (1990)ADSCrossRefGoogle Scholar
  46. 46.
    H. Rauch, S.A. Werner, Neutron Interferometry, 2nd edn. (Oxford University Press, Oxford, 2015)CrossRefGoogle Scholar
  47. 47.
    J. Anandan, Curvature effects in interferometry. Phys. Rev. D 30, 1615–1624 (1984)ADSCrossRefGoogle Scholar
  48. 48.
    B. Mashhoon, D.S. Theiss, Gravitational influence of the rotation of the sun on the earth-moon system. Phys. Lett. A 115, 333–337 (1986)ADSCrossRefGoogle Scholar
  49. 49.
    B. Mashhoon, D.S. Theiss, Relativistic lunar theory. Nuovo Cim. B 106, 545–571 (1991)ADSCrossRefGoogle Scholar
  50. 50.
    B. Mashhoon, D.S. Theiss, Relativistic effects in the motion of the Moon. Lect. Notes Phys. 562, 310–316 (2001)ADSCrossRefGoogle Scholar
  51. 51.
    D.S. Theiss, A new gravitational effect of a deformed mass. Phys. Lett. A 109, 23–27 (1985)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of MissouriColumbiaUSA
  2. 2.School of AstronomyInstitute for Research in Fundamental Sciences (IPM)TehranIran

Personalised recommendations